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Abstract - In all practical transduction systems—such as
biomedical imaging arrays, underwater sonar systems or
piezoelectric actuators and transformers, electro-
mechanical losses impact overall system performance.
Adverse effects of these losses include heat generation,
sub-optimal electrical matching, and reduced
operational efficiency.  Consequently, it is imperative to
fully understand the implications of loss mechanisms
and incorporate them properly in numerical and
analytical models. In this paper, time-domain
electromechanical absorption mechanisms are studied in
terms of their physical mechanisms and frequency-
domain counterparts.  We examine the mechanical and
dielectric losses of some common piezoelectric
materials and discuss some of the issues that arise in
attempting to measure and model them.

INTRODUCTION - WHY MODEL LOSSES?

To accurately model an electromechanical transduction
system, using finite element analysis or otherwise,
requires the full set of electromechanical properties for
each of the system’s constituent materials. These
properties include stiffness, density, dielectric and
piezoelectric coupling constants. Furthermore, the
dynamic response of such a system will only be
accurately characterized if the model accounts for the
loss mechanisms present within each constituent
material. These loss mechanisms, primarily mechanical
attenuation and dielectric loss, greatly impact a device’s
efficiency, maximum drive-level (thermal considera-
tions) and resonant characteristics i.e. bandwidth.

In many devices, the losses in the piezoceramic
parts of the device are low compared to those in its
passive components (matching layers, backing block,
filler materials) and radiation losses. Consequently, the
resonant characteristics of the device as a whole are
dominated by the loss mechanisms in its passive
components. However, there are certain applications
where the losses within the piezoceramic may pose
significant design challenges. For example, in bio-
medical imaging arrays, the dielectric loss in the
piezoceramic is responsible for a significant increase in
the transducer’s resistance at its electrical resonance

frequency, fE. Under extended use with a high pulse
repetition frequency (PRF), electrical dissipation in this
resistive component results in undesirable heat
generation. Strict regulatory limits require that the
temperature at the transducer’s front face be kept below
stringent specified levels. Consequently, great care must
be taken during the design process to ensure that these
thermal considerations are satisfied.

In the above example, heat generation was
undesirable due to regulatory limits and optimal
electrical efficiency was not a primary design goal. In
the portable computer market however, reduced weight
and extended battery life (improved electrical
efficiency) are major selling points. Consequently,
piezoelectric transformers are finding increased
application in the portable computer market where they
are used to provided a compact means of producing the
high voltages required for fluorescent back lighting etc.
These piezoelectric transformers are typically “high Q”
devices, made from piezoceramics such as PZT8 with
few additional external mechanical components. As
such, the transformer’s efficiency will be governed by
the loss mechanisms (mechanical and electrical) in the
piezoceramic. For PZT8, QM=1000, whereas, QE=250,
hence it may be seen that the dielectric loss dominates
and will be the major contributor to reduced efficiency.
Consequently, to facilitate the optimization of
piezoelectric transformer designs, the effects of
dielectric loss must be included in the design and
analysis tools.

In time-domain finite element modeling, frequency
characteristics may be extracted by performing a
transient calculation and subsequently applying a
Fourier transform to obtain the corresponding frequency
domain response. However, to avoid employing
windowing functions (which may significantly distort
the resultant frequency response), the time-domain
response must be fully “rung down” before applying the
FFT. (In fact, this is one of the main attractions of time-
domain analysis since it permits the frequency response
across a wide-frequency band to be obtained via a single
calculation). If losses are omitted from the analysis, then
in the absence of any external mechanical or electrical
damping mechanism, the system will continue to
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resonate indefinitely, thus preventing the accurate
determination of the device’s response as a function of
frequency.

DIFFERENT TYPES OF LOSS MECHANISM

There are several loss mechanisms of importance when
modeling piezoelectric transduction devices. These
include resistive losses in external electronics, radiation
loss to the surrounding medium, mechanical and
dielectric loss in the piezoceramic and mechanical loss
in passive components such as backing, fillers and
matching layers.

In terms of a transducer’s ring-down, external loss
mechanisms will typically tend to dominate the
transducer’s mechanical response, however, in terms of
heat generation within the piezoceramic, dielectric loss
often provides the more significant contribution.
Although, there is a varying amount of mechanical and
dielectric loss in the piezoceramic at all frequencies, the
effects are more significant at some frequencies than at
others. Dielectric loss will typically increase a
transducer’s resistive component by approximately the
same amount at both electrical and mechanical
resonance. However, the percentage increase at
electrical resonance is far more significant than at the
mechanical resonance. Consequently, since a transducer
is typically driven at its electrical resonance, the
dielectric loss often results in a significant increase in
internal losses for a fixed applied voltage. This increase
results in a corresponding increase in internal heat
generation.

Measurement of Mechanical and Dielectric Loss

In transducer models that are based around wave-
propagation through multi-layered media, mechanical
attenuation is normally quantified in terms an
attenuation per unit length, α. Since α is specified as a
logarithmic quantity  (Nepers/m), the resultant mechani-
cal amplitude attenuation is incorporated in the analysis
via an “exp(αx)” scalar multiplier. It is often more
intuitive to express the mechanical attenuation with
units dB/cm @ 1MHz. Under these circumstances, α
may be written as,

)10ln(
10

5
61

f
AdB−=α Eqn. 1

where f is the frequency of interest in Hz, and AdB1 is the
attenuation in dB/cm at a frequency of 1MHz.

It may be shown that a constant complex stiffness,
C, with real part C′ and imaginary part C′′ produces a
linear increase of AdB with f.

AdB at a frequency f may now be written as,
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Here v is the wave speed and QM is the mechanical Q
defined as follows:

CCQM ′′′= / Eqn. 3

Dielectric loss is typically quantified in terms of a
material’s dielectric loss tangent, tanδE which may be
defined as follows,

E
E Q

1
tan =δ Eqn. 4

where QE is the electrical Q for the material. tanδE  may
also be written in terms of the real, ε′, and imaginary,
ε′′, parts of the material’s clamped dielectric constant,
εS, as follows,

ε
εδ

′
′′

=Etan Eqn. 5

The following table lists text-book [1] values for the
mechanical and electrical Q’s for some of the more
commonly used piezoceramics:

QM QE

PZT-5A 75 50
PZT-5H 65 50
PZT-8 1000 250

Table 1: Mechanical and dielectric Q values

From the above table, it may be seen that in both
PZT5A and PZT5H, the dielectric and mechanical loss
mechanisms will provide approximately the same
degree of energy absorption. However, in materials such
as PZT-8, which is often used in high-drive actuator
applications and piezoelectric transformers, the
dielectric loss is significantly greater (low QE) than the
mechanical loss. Consequently, if optimal efficiency is a
design goal, then the dielectric loss mechanism must be
included in the analysis tools for improved accuracy.
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The Piezoelectric Resonance Analysis Program (PRAP)
[2] may be used to extract complex electromechanical
material constants via electrical impedance measure-
ments made on a set of IEEE standard resonators [3].
This program determines the material constants based
on advanced curve fitting techniques applied to the
electrical impedance spectra. However, it is important to
note that the actual material constants may be inherently
frequency dependent, hence the “extracted” values are
only valid at the center frequency which was used by
PRAP to determine those particular properties. Higher
harmonics may also be used to make additional
measurements at other frequencies.

An alternative method, which may be used to
determine QM (AdB) and tanδE, is by adjusting the loss
mechanisms in a 1D analytic transducer model until the
simulated response agrees with the corresponding
experimental measurement. The following equation may
be used to determine the electrical impedance, ZT, of a
1D thickness mode resonator [4],
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Where,
 s is the Laplacian complex variable
T is the one-way propagation time
CO is the clamped capacitance of the transducer
kT is the thickness mode coupling coefficient
TF and TB, the transmission coefficients from the front
and back faces respectively, are given by

( )1/2 ZZZT CCF += Eqn. 7

( )2/2 ZZZT CCB += Eqn. 8

RF and RB, the reflection coefficients from the front and
back faces respectively, are given by

( ) ( )11 / ZZZZR CCF +−= Eqn. 9

( ) ( )22 / ZZZZR CCB +−= Eqn. 10

Finally, KF and KB are defined as,
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Using Eqn. 6 and the following steps, it is possible to
determine the mechanical and dielectric losses for a
piezoceramic thickness mode resonator:

1. Run analytic model with no damping (just radiation
losses for operation into air)

2. Adjust ε′ via the real part of admittance
3. Adjust QM by matching the amplitude of the

mechanical resonance peaks in the impedance
magnitude spectrum

4. Adjust ε′′ via the imaginary part of admittance

The same steps could be repeated for the other IEEE
resonators to quantify the losses in the other modes.  In
practice, it is usually just assumed that the loss tangents
are the same in each direction.

TIME & FREQUENCY DOMAIN REPRESENTATION OF
LOSS MECHANISMS

In frequency-domain analyses of electromechanical
systems, energy absorption is often included by making
the stiffness and dielectric constants complex. This
permits matching observed frequency dependencies of
absorption on a frequency-by-frequency basis. Of
course, “complexifying” cannot be done arbitrarily since
the real and imaginary parts of a linear system’s
frequency-domain response must be conjugate harmonic
functions to guarantee causality in the time-domain.
When the analysis is performed strictly in the time-
domain, prescribed frequency-dependent absorption is
more problematic. Nonetheless, linear models based on
relaxation mechanisms (standard linear solid), or
convenient numerical paradigms (Rayleigh damping)
have been widely accepted. By choosing the appropriate
model, the prescribed variation of absorption versus
frequency can usually be matched over the frequency
range of interest.

In the PZFlex finite element code, we have
implemented several linear viscoelastic models for
mechanical loss. These are described in [5]. The
mechanical viscoelastic models have analogs that can be
used to account for dielectric losses. For example, the
standard linear solid in the mechanics literature is the
same mathematical expression as Debye relaxation used
to model dielectric loss. Table 2 lists the time and
frequency domain relations for each model. These
expressions are given in 1D for simplicity. The results
correspond to one entry in the second order dielectric
tensor. Furthermore, we also assume that the dielectric
tensor is symmetric. In this case, there is a material
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orientation for which it becomes diagonal. We also
assume that the principle axes of the real part coincide
with the principle axes of the imaginary part. In this
case, there are at most 3 independent dielectric functions
at any given point.
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Table 2: Time-domain dielectric loss models and their
frequency-domain counterparts

Experimental results presented in the following section
demonstrate that the Debye relaxation model provides a
reasonable representation of the dielectric function over
a wide frequency range. If better correlation were
necessary, multiple mechanism relaxation models
provide a means of obtaining it. In fact, this approach
has some basis in material science [6]. From an
implementation standpoint, each additional mechanism
increases the CPU cost and number of storage arrays. At
this point, the extra cost is deemed unwarranted.

PRELIMINARY RESULTS

Experimental impedance data for a disk of Motorola
3203HD PLZT (0.508mm thick, 10mm diameter) has
been used to measure the mechanical and dielectric loss
properties for this material. The 1D analytic model and
experimental resonator “curve-fitting” technique
described earlier was used to determine this material’s
mechanical and dielectric loss properties. Furthermore,
the PRAP code was also used to measure the loss
properties at the resonator’s fundamental resonant
frequency and its harmonics.

Figure 1 shows the experimental and simulated
mechanical attenuation (AdB) as a function of frequency.
It may be seen that over the entire frequency range, the
correlation between experiment is reasonably good.
However, for most applications, such a large frequency
range is not particularly relevant, but instead there will
be a reduced frequency range of primary interest. Under
these circumstances, the Rayleigh damping model may
be tuned so that it matches the experimental data with
much greater accuracy.

It should be noted that the experimental data does
not exhibit a perfectly linear variation with frequency
(as is often assumed in practice). In fact, it may be
shown that assuming a linear dB/cm variation in the
frequency domain will result in non-causality in the time
domain.

The measured values for ε′ and ε′′ are shown in
Figures 2 and 3 respectively. These figures also show
the dielectric loss function that may be obtained by
implementing a Debye model. In addition, the results for
a simple loss model, with and without a conductivity
term, are also included. Over a wide frequency range
(0−40MHz), the Debye model matches the experimental
data within 2%. For the more limited frequency ranges
employed in a given simulation, even better agreement
may be obtained. However, although the simple loss
models do not offer such good correlation over an
extended frequency range, over a more restricted range,
these simpler, easier to implement and faster to compute
models, can offer an excellent match. The simple loss
model with a conductivity term has been included to
illustrate its form, however, due to its low frequency
response, it is not a good model for this particular data.

EEED σγε ++= &&&& EjD )(
ω
σγωε +−=

Figure 1: Mechanical attenuation (dB/cm) for Motorola
3203HD PLZT
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Figures 4 and 5 show the real and imaginary parts
respectively of the dielectric constant for Kynar
PVDF [7]. The experimental data is taken from
reference [7] and is cross-plotted against the simulated
dielectric loss using a Debye loss model. The simulated
dielectric loss is seen to provide a close match with the
experimental measurements over the entire frequency
range, with a maximum error of about 3% (note the
range of y-axis values).

Figure 6 shows the electrical impedance magnitude
response for the disk of Motorola 3203HD PLZT. The
experimental measurement is cross-plotted against the
simulated response curves obtained via the 1D analytic
expression from Eqn-6. The 1D model was used to
predict the transducer’s response with various
combinations of loss mechanism included in the model.
The mechanical attenuation has the greatest effect on the
impedance magnitude, whilst the inclusion of the

dielectric loss mechanism has minimal impact on the
impedance magnitude. On the other hand, if we now
consider the real (or resistive) part of the device’s
impedance response (Figure 7), the dielectric loss is
seen to have a much more significant impact on overall
device performance.

From Figure 6 it may be seen that at even harmonics of
the transducer’s mechanical resonant frequency
(2fM,4fM,6fM,…), the impedance magnitude is nominally
independent of mechanical and dielectric loss. At this
frequency there is no net displacement on the surface of
the transducer, i.e. it is effectively clamped.
Consequently, the standard technique for measuring εS

based on the impedance at 2fM (or any other even
harmonic) is seen to be justifiable. However, since the
real impedance (Figure 7) is highly sensitive to all loss
mechanisms, not just dielectric loss, tanδE can not be
determined accurately using the same technique. More

Figure 2: ε′/εo for Motorola 3203HD PLZT
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Figure 3: ε′′/εo for Motorola 3203HD PLZT

Figure 4: ε′/εo for Kynar-PVDF
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Figure 5: ε′′/εo for Kynar-PVDF
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accurate measurement over a continuous frequency
range is possible using the analytic-experimental
approach described in this paper.

CONCLUSIONS

We have explored the measurement and modeling of
material loss mechanisms in two common piezoelectric
materials.  The goal was to observe the variation in
material response with frequency to guide the selection
of appropriate, theoretically sound, time domain
material models.  Though by no means an exhaustive
set, we hope that the measured response is at least
qualitatively representative of most piezoelectric
materials in the frequency range of interest.

A procedure has been proposed for extracting the
mechanical and dielectric loss functions for IEEE
resonators over a continuous frequency band.  The
results compare well with the discrete values obtained
from PRAP. Based on these results, it appears that a
classical Debye relaxation model provides an adequate
model for dielectric loss, whilst Rayleigh damping
provides an adequate model for mechanical loss.

1D simulations of a thickness mode resonator
demonstrate that properly modeling both the mechanical
and dielectric losses dramatically improves the ability to
calculate the real part of impedance.

Since dielectric losses do not dramatically effect the
dynamic response of a device, it may be
computationally expedient to simply scale the
mechanical and/or electric intensities by the appropriate
constants to compute the heat generation.
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Figure 6: Impedance magnitude spectrum for the disk
of Motorola 3203HD PLZT

Figure 7: Resistive part of the impedance response for
the disk of Motorola 3203HD PLZT
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