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Loss Mechanisms in Piezoelectrics: How to

Measure Different Losses Separately
Kenji Uchino, Member, IEEE, and Seiji Hirose, Member, IEEE

Abstract—ILosses in piezoelectrics are considered in gen-
eral to have three different mechanisms: dielectric, mechan-
ical, and piezoelectric losses. This paper deals with the phe-
nomenology of losses first, then how to measure these losses
separately in experiments. We found that heat generation
at off-resonance is caused mainly by dielectric loss tané’
(i.e., P-E hysteresis loss), not by mechanical loss, and that
a significant decrease in mechanical Qm with an increase
of vibration level was observed in resonant piezoelectric ce-
ramic devices, which is due to an increase in the extensive
dielectric loss, not in the extensive mechanical loss. We pro-
pose the usage of the antiresonance mode rather than the
conventional resonance mode, particularly for high power
applications bocause the mechanical quality factor Qp at an
antiresonance frequency is larger than Qs at a resonance
frequency.

1. INTRODUCTION

08S or hysteresis in piezoelectrics exhibits both merits
Land demerits. For positioning actuator applications,
hysteresis in the ficld-induced strain provides a serious
problem and, for resonance actuation such as ultrasonic
motors, loss generates significant heat in the piezoclectric
materials. Further, in consideration of the resonant strain
amplified in proportion to a mechanical quality factor, low
{intensive) mechanical loss materials are preferred for ul-
trasonic motors. On the contrary, for force sensors and
acoustic transducers, a low mechanical quality factor Qp,
(which corresponds to high mechanical loss) is helpful to
widen a frequency range for receiving signals,

Haerdtl [1] wrote a review article on electrical and me-
chanical losses in ferroelectric ceramics. Losscs are con-
sidered to consist of four portions: domain wall motion;
fundamental lattice portion, which also should oceur in
domain-free monoerystals; microstructure portion, which
occurs typically in polyerystalline samples; and conductiv-
ity portion in highly ohmic samplcs. However, in the typ-
ical pilezoelectric coramic casce, the loss due to the domain
wall motion exceeds the other three contributions signifi-
cantly. Thoy reported intoresting experimental results on
the rclationship between clectrical and mechanical losses
in piezoceramics, Pbyglag,1(Zry.5Tig.5)1—xMeyxOs, where
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Me represents the doped ions Mn, Fe, or Al and x varied
between 0 and 0.09. However, they measured the mechan-
ical losses on poled ceramic samples, while the clectrical
losses on unpoled samples, i.c., in a different polarization
state. Thus, they completely neglected piczoelectric losses.

As far as we know, not much rescarch effort has heen
put into systematic studies of the loss mechanisms in
piezoelectrics, particularly in high-voltage and high-power
ranges. Because not many comprehensive descriptions can
be found in previous reports, this paper will clarify the
loss mechanisms in piezoclectrics phenomenologically, de-
scribe heat generation processes and high power charac-
teristics, and discuss the resonance and antiresonance vi-
bration modes from a viewpoint of a quality factor.

Although Tkeda [2] described part of the formulas of this
paper in his textbook, he totally neglected the piczoelectric
losses, which have been found not to be neglected in our
investigations. We derive the full descriptions of the losses
in this paper. It is also worth noting that we have changed
the terminologies “extrinsic” and “intrinsic” losses used in
our previous presentations and papers to “intensive” and
“extensive” losses, respectively, in this paper.

II. Loss AND HYSTERESIS IN THI
PoLARIZATION CURVE

A. Relation Detween Hysteresis and Dissipation Factor

Let us start first with loss and hysteresis in the clec-
tric displacement D (neatly equal to polarization P) vs.
electric field £ curve without considering the electrome-
chanical coupling. Fig. 1{a) shows an cxample of a P-E
hysteresis curve. When the D (or P) traces a different line
with increased and decreased applied electric field F, it is
called hystercsis.

When the hysteresis is not very large, the eleetric dis-
placement D can be expressed by using a slight phase lag
to the applied electric field. The hysteresis curve shows an
ellipse in this casc. Assuming that the clectric field oscil-
lates at a frequency (= w/27) as

E* = Eoej“’t, (1)

the induced electric displacement also oscillates at the
same frequency under the stcady state, but with some time
phase delay 8"

D* = Dge@t=%), (2)
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Fig. 1. (a) D vs. E (stress free), (b} = vs. X (short-civcuit), (¢) = vs.
hysteresis in each relation.

If we express the relation between Dx and Ex as:

D¥ = e*eg B, (3)

where the complex dielectric constant &* is:

* ’ 7
g =g —je",

(4)
and where

g’/e" = tané'. (5)
Note that the negative connection in (4) comes from the
time “delay,” and that e'eq = (Do/Ly) cosd’ and &gy =
(Do/Eg) sin 5,~

The area w, corresponds to the consumed loss energy
during an electric field cycle per unit volume of the di-
electrics and can be related in isotropic diclectrics with &”
or tan &’ as follows: ‘

27 fw
0
(6)

When there is no phase delay (6’ = 0), we = 0; L.e., the
electrostatic energy stored in the diclectric will be recov-
ered completely after a full cycle (100% efficiency). How-
ever, when there is a phasc delay, the loss w, will be ac-
companied per cycle, and the dielectric material gencrates
heat. The tan &’ is called diclectric dissipation factor.

In consideration of the stored electrostatic energy dur-
ing a half cycle from — Ey to Ey[= 4 U,, which is illustrated
as an area in Fig. 1{a)] provided by:

= 7e"eo B = me’eo Eg tan &'

4UE = (1/2)(2 EQ)(Q E[E()Eo) = 2€I€0E§, (7)
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E (stress free), and (d) I vs. X (open-circuit) curves with a slight

the dissipation factor tand’ can be experimentally ob-
tained by:

tand’ = (1/2x) (we/Us). (8)

Note that w, is the hysteresis in a full ¢ycle and U, is the
stored cnergy in a quarter of a cycle.

B. Temperature, Flectric Field, and
Frequency Dependence of P-FE Hysteresis

Fig. 2, 3, and 4 show temperature, electric field and fre-
quency dependence of the dissipation factor tan ¢’ calcu-
lated from the P-E hysteresis loss measured under stress-
free conditions for a PZT-based ceramic. Experimental de-
tails are in [3]. The loss tand’ decreases gradually with
increasing temperature, but it is rather ingensitive to fre-
quency. On the contrary, the tand’ increases initially in
proportion to the applied electric ficld, exhibiting a sat-
uration above a certain electric field. Aftcr reaching the
saturation, i.e., more than 0.1 of tan ¢’, this complex phys-
ical quantity treatment should not be used. The value for
E = 0 (solid triangle mark in the figure) was obtained with
an impedance analyzer.

III. GENERAL CONSIDERATION OF LOSS AND
HysTRRESIS

A. Theoretical Formulas

Let us expand the above discussion into more general
cases, 1.e., plezoclectric materials. We will start from the
Gibbs free energy G expressed by:

dG = —wdX — DAE - §dT, (9)
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or

G=—(1/2)sBX? —dX E — (1/2) e¥ey I°.
(10)

Here, ¢ is strain, X is stress, D is electric displacement, F
is electric ficld, S is enthalpy, and 7" is temperature. (10) is
the energy expression in terms of intensive (i.c., externally
controllable) physical parameters X and E. Temperature
dependence is carried into the clastic compliance s, the
dielectric constant £* and the piezoelectric constant d. We
will obtain the following two piezoelectric equations:

x = —(0G/0X) =s*X +d L,
D= —(8G/0F) =d X +e%eE.

(1)
(12)

Note that thermodynamical equations and the con-
sequent piezoelectric equations [(9)- (12)] cannot yield a
delay-time-rclated loss without taking into account ir-
reversible thermodynamic equations or dissipation func-
tions, in general. However, the lattor considerations are
mathematically equivalent to the introduction of complex
physical constants into the phenomenological equations, if
the loss can be treated as a perturbation.

Therefore, we will introduce complex paramcters X
g% and d* in order to consider the hystercsis losses in
dielectric, clastic, and piezoclectric coupling energy:

£ =¥ (1 —jtand’), (13}
s5° = sB(1 — jtang’), (14)
d*=d(1 —jtang", (15)

where € is the phase delay of the strain under an applied
electric field, or the phasc delay of the electric displace-
ment under an applied stress. Both delay phases should be
exactly the same if we introduce the same complex piezo-
electric constant d* into (11) and (12). ' is the phase delay
of the electric displacement to an applied electric field un-
der a constant stress (e.g., zero stress) condition, and ¢’
ig the phase delay of the strain to an applied stress under
a constant electric field (e.g., short-circuit) condition. We
will consider these phase delays as “intensive” losscs.

Tig. 1{a)—(d) correspond to the model hysteresis curves
for practical experiments: D vs. F curve under a stress-free
condition, x vs. X under a short-circuit condition,  vs. F
under a stress-free condition, and D vs. X under an open-
circuit condition for measuring charge (or under a short-
circuit condition for measuring current), respectively, No-
tice that these measurements are easily conducted in prac-
tice.

In a similar fashion to the previous section, the stored
energies and hysteresis losses for pure dielectric and elastic
cnergies can be calculated as:

U, = (1/2)e*eo B, (16)
W, = weReg B2 tan &', (17)
Um = (1/2)s"XE, )

)

Al ,
W, = WSLX(f tan ¢’
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The electromechanical loss, when meaguring the in-
duced strain under an electric field, is more complicated.
Let us calculate the stored energy Ugy, during a quarter
clectrie field cycle (i.c., 0 to Eq) , first:

Uon == [ xdX = (/D) = (1/2) (B0
~ (1/2)(d2/sP)E2. (20)

Replacing d and s® by d* = d(1 — jtan@’) and s*° =
s®(1 — jtan ¢’), we obtain

Uerm = (1/2)(d*/s%)ESG, (21)

and

Wern = m(d?/s®) E3 (2tan®’ — tan¢’). (22)

Note that the strain wvs. electric field measurcment
seems to provide the piczoelectric loss tan @’ dircctly; how-
ever, the observed loss should include an additional elastic
loss because the strain should be delayed to the initial
stress, which is needed to calculate energy.

Similarly, when we measure the induced charge under
stress, the stored energy Uy, and the hysteresis loss we
during a quarter and a full-stress cycle, respectively, are
obtained as:

Une = (1/2)(d2/5()sx) ng (23)

and

Wine = 7(d?/e0e™) X2 (2tané’ — tand’). (24)

Hence, from the measurements of D vs. Ib and & vs.
X, we obtain tand’ and tan¢’, respectively, and either
the piezoelectric (D vs. X)) or converse piezoclectric mea-
surement (z vs. F) provides tan6’ through a numerical
subtraction.

So far, we have discussed the “intensive” dieleciric, me-
chanical, and piezoclectric losses. In order to consider real
physical meanings of the losses, we will introduce the “ex-
tensive” losses [2]. When we start from the energy expres-
glon in terms of extensive (material’s own) physical pa-
rameters x and D, that is,

dA = Xdu + EdD - SdT, (25)

we can obtain the piezoelectric equations as follows:
X = (0A/92) = Pz —h D, (26)
E=(8A/0D) = —ha+ k*ro D. (27)

We introduce the extensive dielectric, elastic, and piezo-
electric losses as:

£ = k(1 +jtan ), (28)
P =P (1 +jtan ), (29)
h* = h(l + jtan®d). (30)
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It is notable that the permittivity under a constant
strain (e.g., zero strain or completely clamped) condition,
g%" and the elastic compliance under a constant electric
displacement (e.g., open-circuit) condition, s®* can be pro-
vided as an inverse valuc of £** and c¢P*, respectively. Thus,
using cxactly the same losses in (28) and (29),

& = e*(1 —jtand),

$P7 = sP(1 —jtan @),

(31)
(32)

we will consider these phase delays again as “cxtensive”
losses.

Here, we consider the physical property difference be-
tween the boundary conditions: E constant and D con-
stant, or X constant and x constant. When an elecric field
is applied on a piezoelectric sample as illustrated in the
top of Fig. b, this state will be equivalent to the superpo-
sition of the following two steps; the sample is completely
clamped and the field Fy is applied (pure electrical en-
ergy (1/2)e*egE2 is input); and keeping the field at Ky,
the mechanical constraint is released (additional mechan-
ical energy (1/2)(d?/s®) E2 is neccessary). The total cn-
crgy should correspond to the total input electrical energy
(1/2)e*o EZ; thus, we obtain the relation,

£0e™ = ege® + (d?/sP). (33)
Similarly, from the bottom of Fig. 5,
s = a0 4 (d%/ene™). (34)
Ilence, we obtain the following equations:
/e’ = (1-%kY), (35)
sP/sH = (1 - 1%, (36)
where
k? = d?/(s% ge™). (37)
Similarly,
KX = (1K), (38)
ef/eP = (1 - 12, (39)
where
k? = h?/(c” k*kq). (40)

This k is called the electromechanical coupling factor,
and is the same as the k in {37}, because the equation
A% /(sPepe®) = 12/(cP k¥Ky) can be verified mathemaii-
cally. We define the k as a real mumber in this manuscript.

In order to obtain the relationships between the inten-
sive and extensive losses, the following three equations arc
essential:

c0e™ = [w¥ho (1= 0%/ (c” w¥ro))] (41)
s = [cP (1 = b2/(cP k*k0))] 7, (42)

d = [h2/(cP K50)] [ (1 — h2/(cP 1¥r0))] .
(43)
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Electrical Energy
= (1/2) e0eX Ep2
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Electrical Energy

= (1/2) egeX EQ2

Stored
Mechanical Energy

= (1/2) (d2/sE)Ep2

= +
T T
Mechanically L——_
clamped Electrically
short-circuited

Mechanical Energy
= (1/2) sEXxg2

f

Mechanical Energy
= (1/2) sPXp2

Electrical Energy
= (1/2) (d2/e0eX)X0?

rent

\

Electrically
short-circuited

Tig. 5. Conceptual figure for explaining the relation betwoen €%

Replacing the parameters in (41) (43) by the complex pa-
rameters in (13) (15), (28)-(30), we cbtain the rclation-
ships between the intensive and extensive losses:

tand’ = (1/(1 — k?))[tan 6 + k*(tan ¢ — 2tan 9)],
(44)
tan ¢’ = (1/(1 — k?))[tan ¢ + k2 (tan § — 2 tan )],
(45)
tand = (1/(1 —k*))[tand 4 tan¢ — (1 + k*) tan0)],
(46)
where k is the clectromoechanical coupling factor defined
by either (37) or (40), and here as a real number. 1t is im-

Electrically
open-circuited

Potarization

P=dXp
Inverse field
E = dXpo/epeX

and €%, %, and s".

portant thal the intensive diclectric and clastic losses arc
mutually correlated with the extensive dielectric, clastic,
and piezoelectric losses through the electromechanical cou-
pling k2, and that the denominator (1-1k2?) comes basically
from the ratios, e*/e¥ = (1 — k2) and sP/s" = (1 — k?),
and this rcal part refleets to the dissipation factor when
the imaginary part is divided by the real part. Also note
that, depending on the vibration mode, the definition
of clectromechanical eoupling k can be changed such as
1(2 == (12/(SD E()EX).
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Fig. 6. Dissipation factors determined from (a) D vs. E (stress frec), (b) @ vs. X (short-cireuit), (¢) z vs. E (stress free), and (d) D vs. X

{open-circuit) curves for a PZT-based actuator.

B. Ezperimenial Exzample

Fig. 6 shows “intensive” dissipation factors determined
from Fig. 6(a) D vs. E (stress frec), Fig. 6(b) z vs. X
{short-circuit), Fig. 6(c) = vs. E (stress free), and Fig. 6(d)
D vs. X (open-circuit) curves for a soft PZT-based mul-
tilayer actuator used for Figs. 2, 3, and 4. The details on
the cxperiments will be reported in the successive papers.
Fig. 7 shows the result for the piezoclectric loss tan &', We
used the correlation factor between electric field and com-
pressive stress given averagely by X = (g0 /s®)/2 E.

IFrom Figs. 6 and 7, we can calculate the “extensive”
losses as shown in Fig. & Note that the piezoelectric losses

tanf’ and tan@ are not as small as previously believed,
but they are comparable to the dielectric and elastic losses
and increasc gradually with the field or stress. Also it is
noteworthy that the extensive dielectric loss tan é increases
significantly with an increase of the intensive parameter
(i.e., the applicd electric field), and the extensive elastic
loss tan ¢ is rather insensitive to the intensive parameter,
i.e., the applied compressive stress.

When similar measurements to Figs. 1(a) and (b}, but
under constrained conditions—that is, D vs. F, under a
completely clamped state, and = vs. X, under an open-
circuit state, respectively—we can expect smaller hystere-
ses, that is, extensive losses, tand and tan ¢. These moa-
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surements seein to be alternative methods to determine the
three losses separately; however, they are rather difficult
in practice.

IV. Loss AND HEAT GENERATION

Heat gencration in various types of PZT-based actua-
tors has been studied under a relatively large electric ficld
applied (1 kV/mm or more) at an off-resonance frequency,
and a simple analytical method was cstablished to evaluate
the temperature rise, which is very useful for the design
of piczoelectric high-power actuators. Heat gencration in
a resonating piezoclectric sample is discussed in the next
section.

Zheng et al. [3] reported the heat generation from vari-
ous sizes of multilayer type piezoelectric coeramic actuators.
Fig. 9 shows the temperature change with time in the ac-
tuators when driven at 3 kV/mm and 300 Hz. Fig. 10 plots
the saturated temperature as a function of Vo/A, where
Ve is the effoctive volume (electrode overlapped part) and
A ig the surface area. This lincar relation is reasonable be-
cause the volume V, gencrates the heat, and this heat is
dissipated through the area A. Thus, if we need to suppress
the tempcerature rise, a small Vo /A design is preferred.

According to the law of encrgy conservation, the rate of
heat storage in the piezoelectric resulting from heat gen-
cration and dissipation effccts can be expressed as:

dg — Qout = V pC (dT/dt)a (47)
agsuming uniform temperature distribution in the sample.
V, p, ¢ are total volume, density, and specilic heat, respec-
tively. The heat generation is considered to be caused by
losses. Thus, the rate of heat generation (q,) in the piezo-
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clectric can be expressed as:

qe = utV,, (48)
where u is the loss of the sample per driving cycle per unit
volume, f is the driving frequency, and V., is the effective
volume where the ceramic is activated. According to the
measiring condition, this u corresponds to the intensive
dielectric loss we of (17), which consists of the extensive
diclectric loss tand and the electromechanical and piczo-
electric combined loss (tan ¢ — 2 tan 8) in the previous see-
tion:

0= w, = meXeg B2 tan &'

= [1/(1 — k)] [tan § + k* (tan ¢ — 2 tan 0)jreXeq &7,
(49)

Note that we do not need to add weyn explicitly, because
the corresponding electromechanical loss is already in-
cluded implicitly in we.

When we neglect the conduction heat transfer, the rate
of heat dissipation (qeyt) from the sample is the sum of the
rates of heat flow by radiation (q,) and convection (q,):

= v + e
= UeA(,

q{)llL

— T + b A(T —Tp), (50)

where o is the Stchan-Boltzmann constant, ¢ is the emis-
sivity of the sample, L. is the average convective heat
transfer cocllicient, and A is the sample surface area. Thus,
(47) can be written in the form:

uf V—A k(TYT —Ty) =V pe(dT/dt), (51)

where
K(T) = oe(T? + TE)T + To) + he (52)

is defined as the overall heat transfer coefficient. If we as-

sume that k(T) is relatively insensitive to temperature

change, the solution to (51) for the piezoelectric sample
temperature is given as a function of time (t):

T—Tp=uf V/k(T)A][1 —c %], (53)

where the time constant 7 is exprossed as:

T = pcV /K(THA. (54)

As { — 00, the maximum temperature rise in the sample
becomes:

AT = f Vo/k(T) A (55)
As t — 0, the initial rate of temperature rise is:
(d7/dt) =u f Vo/pc V=AT/7. (56)

Figs. 11 and 12 show the dependence of k(T') on applied
electric field and frequency. Because k(7' is not really con-
stant, we can calculate the total loss u of the piezoclectric
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Fig. 8. Intrinsic loss factors tan §, tan ¢, and tan @ as a function of electric ficld or compressive stress, measured for a PZT-based actuator.

more preciscly through (56). The calculated results arve
shown in Table I. The experimental data of P-I hystere-
sis losses under a stress-free condition also are listed for
comparison. It is seen that the P-E hysteresis intensive
loss agrecs well with the total loss contributing to the heat
generation under an off-resonance drive.

V. LOSSES AT A PIEZOELECTRIC RESONANCE

So far, we have considered the losses for a quasi-static
or off-resonance state. Problems in ultrasonic motors that
arc driven at the resonance frequency include significant
distortion of the admittance frequency spectrum duc to
nonlinear behavior of clastic compliance at a high vibra-
tion amplitude, and heat generation that causcs a serious
degradation of the motor characteristics through depoling
of the piczoceramic. Thercfore, the ultrasonic motor re-
quires a very hard-type piezoclectric with a high mechan-
ical quality factor Qu, leading to the suppression of heat
generation. It is also notable that the actual mechanical

vibration amplitude at the resonance frequency is directly
proportional to this Q,, value.

A. Losses at a Piezoclectric Resonance

1. Piezoelectric Resonance Without Loss: Let us first
review the longitudinal mechanical vibration of a picxo-
ceramic plate without loss through the transverse piezo-
electric effect (d3q) as shown in Fig. 13 [4]. Assuming that
the polarization is in the z-direction and the x-y planes
are the plancs of the electrodes, the extentional vibration
in the x direction is represented by the following dynamic
equation:

p(OPufOt) = F = (0X11/0x) + (0X12/0y) + (8X13/?Z)$
57

where u is the displacement of the small volume element
in the ceramic plate in the x-direction and p is the density.
When the plate is very long and thin, X5 and X3 may be
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TABLE [
L0$3 AND OVERALL Hisar TRANSFER COEFFICINT FOR PZ1" MUITILAYER SAMPLES (I =3 xV/MM, ¥ = 300 Hz).

Actuator

4.5 x 3.5 X 2 mm

TXTx2mm 17X3.5xX 1 mm

Total loss (x103]/m?)

B3 1x9%0.3 mnjl

-4

u= ¥ (E) 19.2 19.9 19.7
fVe dt t—0 .
P — E hysteresis loss (x103J/m3)  18.5 17.8 174
K(T) (W/m?K) 38.4 39.2 34.1
150 LN R B S B RN B NN R B BN I BN R 120
2) i $X5%20 mni| J ! J ! ! ! d
S 1
e | -
< 100} 7x7x2 mm_| -
o L |
2 [ >
£ R 17x3.5%x1 m ~
P 2 5x3.5x2 mmy] B
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i
=
=
R
>
-«

1 3 PR | ] 2 1

400 600

% 200

Driving Time (sec)
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Fig. 9. Temperature rise for various actuators while driven at 300 Hz
and 3 kV/mm,

set cqual to zero through the plate, and the velation be-
tween stress, electric field (only E, cxists), and the induced
strain is given by:

Xy = /st — (dsa/sP) B (58)

Introducing (58) into (57) and allowing for @1 = du/dx
and OL,/0x = 0 (due to the equal potential on cach clec-
trode), leads to a harmonic vibration equation:

—w?pshiu = 8%u/ox2. {59)
Ilere, w is the angular frequency of the drive field. Substi-
tuting a general solution u = w1 {(x)e™® + ua(x)o™" into
{58), and with the boundary condition X; = 0 at x = 0
and T (sample length), a solution can be obtained as shown
in (60) and (61) (top of next page). Here, v is the sound
velocity in the piezoceramic, which is given by:
v =1/\/psiy. (62)
Because the total current is given by (63) (top of next,
page) and using (60), the admittance for the mechanically
free sample is calculated to be (64) (top of next page),
where w is the width, [i is the length, t is the thickness
of the sample, and V' is the applied voltage. €5© is the
permittivity in a longitudinally clamped sample, which is
given by:

T.C

eoel® = gpeX — (d3,/s%) = 0eX (1 — K3,).

(65)

0 | | L1 1 1
0 0.1 0.2 03 04 05 06 0.7
ve/A (mm)

Itig. 10. Temperature rise vs. Vo /A {3 kV/mm, 300 Hz), where Ve
is the effective volume generating the heat and A is the surface area
dissipating the heat.

The final transformation is provided by the definition,

]{31 = d31/ S]{)] E(]Eg(A (66)

When the drive frequency is much lower than the reso-
nance, taking w — 0 (64) leads to Y = (jwwL/t)eX (cor-
responding to the static capacitance). The piczoelectric
resonance is achioved when the admittance becomes infi-
nite or the impedance is zero. The resonance frequency fr
is calculated from (64), and the fundamental fp is given

by:
fpn =v/2L =1/ (QL\/ps]ﬁ) .

However, the antircsonance state is generated for zero ad-
mittance or infinitc impedance:

(67)

(waL/2v) cot{wal/2v) = —d2, /ekCsb = —k2,/ (1 - 1{§1))~
68

The resonance and antiresonance states are described
by the following intuitive model [4]. In a high electrome-
chanical coupling material with k almost equal to 1, the
resonarnce or antiresonance states appear for tan(wl./2v) =
oo or 0 [i. e, wL/2v = (m — 1/2)7w or mw (m: integor)],
respectively. The strain amplitude 2, distribution for each
state [calculated using (60)] is illustrated in Fig. 14. In the
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{strain) Ou/Ox = z; = d3y By[sinw(L — x)/v + sin(wx/v)]/ sin(wL/v), (60)
L
(total displacement) AL = /midx = da1 E,L{2v/wL) tan(wL/2v) (61)
0
I L
i= ijng dx = jww/ [(605§ —dz /bﬂ) E, + (dg—l/sﬁ)mj] dx, (63)
0 0
Y = (1/2) = (i/V) = (i/ Eqt)
= (juwL/t)eoes [1 4 (di, /20t sty ) (ban(wL/2v) / (wL/2v))] (64)

T [ I 1 1 T
40} .
% 30+ -
E 20 -
=
~  10F i
0 I L L I 1 |
0 05 1 1.5 2 25 3 3.5
E (kV/mm)

Fig. 11. k(T as a function of applied electric field (400 Hz, data from
the actuator with dimensions of 7 mm x 7 mm x 2 mm).

resonancc state, large strain amplitudes and large capac-
itance changes (called motional capacitance) are induced,
and the current can easily flow into the device. Note that,
for a loss-free piezoelectric, the strain is calculated to be
infinite in (60). However, at the antiresonance, tho strains
induced in the device cancel each other completely, result-
ing in no capacitance change, and the current cannot flow
eagily into the sample. Both ends of the plate correspond
to the nodal points, which do not generate any motion to
be used for actuators. Thus, for a high k material, the first
antiresonance frequency fs should be twice as large as the
first resonance frequency fg.

In a typical case, where k3; = 0.3, the antiresonance
state varies from the above-mentioned mode and becomes
closer to the resonance mode. The low-coupling mate-

40 T T T T

301 // i}

k(T) (WmiK)

201 ~
10 —m— 1.0 kV/mm
—e— 1.5kV/mm
0 | | —5—2.0kV/mm
0 Q.5 1 1.5 2 2.5
f (kHz)

Fig. 12, Overall heat transfer coefficient k(T") as a function of fro-
quency.

Az ]

b‘f(“ > X
0 ', Q

IFig. 13. Longitudinal vibration through the transverse piezoclectric
offect (ds1) in a rectangular plate.
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Resonance

317

Antiresonance
Low coupling

High coupling

© >¢

e @ O > e &

I'ig. 14. Strain gencration in the resonance or antiresonance state. The strain magnitude is plotted in the vertical axis as a function of the

x coordinate.

rial exhibits an antiresonance mode in which capacitance
change due to the size change is compensated completely
by the current required to charge up the static capacitance
(called damped capacitance). Thus, the antiresonance fre-
quency T will approach the resonance fR.

When (fa — Ir) is not very large due to a small elec-
tromechanical coupling, we can derive the following ap-
proximate expression for fao. Assuming that wa — wp is
much smaller than wg (= 7v/L), and

(waL/2v) cot|(wa — wr)L/2v — 7/2] = =3,/ (1 =13, .

(69)
Thus,
wa = (rv/L)L + (4/7°)K5 ), (70)
where we introduced a new parameter Kz as:
KEy = k5, /(1 — k3)). (71}

It is notable that, for a piczoelectric sample with a typical
kay value, the two ends of the plate are not the nodal
points; that is, we can oxpect rathor large displacements,
which can be applied for ultrasonic motors.

2. Piezoelectric Resonance with Losses: Now we will
introduce the complex parameters into the admittance
curve around the resonance frequency, in a similar way
to the previous section: ¥ = &£(1 — jtand’), by =
sP (1 —jtang’), and d}, = d(1 — jtan@) into (64) [see
(72); next page]. For (72),

Co = (WL/t)E()Eg’(,
Ca=(1-— kﬁl)CO.

(73)
(74)

Note that the loss for the first term (damped conductance)
is represented by the “extensive” dielectric loss tand, not
by the intensive loss tan é’. Taking into account

Vi =1/y/psti (1 — jtan ') = v(1 + (1/2)jtang’),

(75)
we further calculate 1/ tan{wl/2v*) with an expansion-
scries approximation around (wl/2v) = 7/2. The reso-

nance state is defined in this casc for the maximum ad-
mittance point, rather than the infinite Y.

We will use new frequency parameters,

N =wL/2v,AQ =0 —7/2{«< 1). (76)
Because wl./2v* = (/2 + AQ)[1 — (1/2)j tan ¢'],
1/ tan{wl/2v*) = —~AQ 4 j(r/4) tan ¢'. (77)

Thus, using K3, = k%, /(1 —k%,), the motional admittance
Y is approximated around the first resonance frequency
by (78) (top of next page). The maximum Yy, is obtained
at AQ =0:

YU = (8/7%) wp Ca K3 (tan ')t (79)
In order to obtain the mechanical quality factor, let us
obtain AQ, which provides Yho*/\/2. Because A{l =
(mw/4)tan ¢’ is obtained,

Qu = Q/2AQ = (7/2)/2(7/4) tan ¢’ = (tan ¢') .
(80)

This verifies the already uscd relation, Qu = (tang’) .

Here, the displacement amplification also is considered.
From (61), also by using the complex parameiers, (81} is
true (sec top of next page). The maximum displacement
Umax 18 Obtained at AQ = 0;

Umax = (8/7T2) ds1 E.,‘L(tan (.b,)*l . (82)
The maximum displacement at the resonance frequency
is (8/7%) Qu times larger than that at a nonresonance
frequency (dg1 F,L).

In a brief summary, we obtained an already used knowl-
cdge: when we observe the admittance or displacement
spectrum as a function of drive frequency, and obtain
the mechanical quality factor Q, estimated from Q,, =
wo/2Aw, where 2Aw is a full width of the 3 dB down (i.e.,
1/4/2) of the maximum value at w = wp, we can obtain
the intensive mechanical loss tan ¢'.

B. Equivalent Circuit

The equivalent circuit for the piezoelectric actuator is
represented by a combination of L, €, and R. Fig. 15(a)
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Y= Ycl + Ym
= (jwwL/t)eoeX (1 — K231 —j(1/(1 — k3 ) (tand’ + k3, (tan ¢’ — 2tan )]
+ (JuwL/t)eoerkd [1 — j(2tan & ~ tan ¢')]ltan(wL/2 v*)/(wL/2v")]
= jwCo(1 — k21 — j(1/(1 — k3, ))(tan & + k3, (tan ¢’ — 2tand’))]
+ jwCok3, [1 — j(2tan # ~ tan ¢')][tan{wL/2v*)/(wL/2v")]
= jwCy(1 —jtan§) + jwCaK2 [1 — j(2tan & — tan ¢')]ftan(wl./2v*)/(wl./2v*)], (72)
Yin = jwCq K2 [1 — j(2tan @’ — tan ¢")|[tan(wl/2v+) /(wl/2v*)]
= jwoCa K5;[1 — i(2tand’ — tan ¢")]/[(— AQ + j(r/4) tan ¢ ) (7 /2)(1 — (1/2)jtan ¢')]
= j(8/mH)woCa K2, [(1 +j(3/2) tan ¢ — 2 tan 8))/[(—(4/7)AQ + jtan ¢')]. (78)
u(L) = di; £,L(2v* /wL) tan(wL/2v")
= 2d3; (1 — jtan 0") B,L{v(1 + (1/2)j tan ¢') /wl] tan(wl/2v")
= 2dy, (1 — jtand’) B, LIv(1 + (1/2) jtan ¢) /woL] /(- AQ + j(7/4) tan ¢'). (81)
The total resistance Ra(= Ra-+R,,) should correspond
Rd to the logs tan ¢’, which is composed of the extensive me-
chanical loss tan ¢ and diclectric/piezoelectric coupled loss
Gqa —— C¥f (tand — 2tand) (45). Thus, intuitively speaking, Rq and
LA R correspond to the extensive dielectric and mechanical
losses, respectively. Note that we introduced an additional
Caq—— CA resistance Rq to explain a large contribution of the di-
R GB :g LB clectric loss when a vibration velocity is relatively large.
m B Precisely spcaking, the above description is not very true.
The details will be reported in a forthcoming paper. In
© contrast, the equivalent circuit for the antiresonance state
(a) (b) of the same actuator is shown in Fig. 15(b}), which has high

Fig. 15. Equivalent circuit of a piesoelectric device for the resonance
{(a) and the antiresonance (b).

shows an equivalent circuit for the resonance state, which
has very low impedance. Taking into account (72), we can
understand that Cq and Ry correspond to the electrostatic
capacitance (for a longitudinally clamped sample in the
previous case, not a free sample) and the clamped (or “ex-
tensive” ) dielectric loss tan d, respectively, and the compo-
nents Lo and Cp in a series resonance circuit are related
to the piezoelectric motion. For example, in the case of
the longitudinal vibration of the above rectangular plate
through dgy, these components are represented approxi-
mately by

La = (p/8)(Lb/w)(s77 /d3,), (83)
Ca = (8/7%)(Lw/b)(d3, /s1})- (84)

impedance.
C. Losses as a Function of Vibration Velocity

Fig. 16 shows the mechanical Q. vs. basic composition
x at two effcctive vibration velocities vg = 0.05 m/s and
0.5 m/s for Pb(ZrTi; )O3 doped with 2.1 at.% of Fe [5].
The decrease in mechanical @y, with an increase of vibra-
tion level is minimum around the thomhbohedral-tetragonal
morphotropic phase boundary (52/48). In other words, the
smallest Q,, material at a small vibration level becomes
the best at a large vibration level, and the data obtained
by a conventional impedance analyzer with a small volt-
age/power does not provide data relevant to high power
materials.

Let us consider the degradation mechanism of the me-
chanical quality factor Q,, with increasing vibration veloc-
ity. Fig. 17 shows an important notion on heat generation
from the piezoclectric material [6]. The damped and mo-
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Pb(Zr,Ti1.)O3 + 2.1 at% Fe

2000 F

Vibration velocity _]

vo =0.05 m/s 600

1000 vo=05m/s =400

Mechanical quafity factor G

200

Mechanical quality factor Q

0.48 0.50 052 0.54 056 0.58

Mole Fraction of Zr (x)

Fig. 16. Mechanical Qum versus basic composition x at two cllective
vibration velocities vg = 0.05 m/s and 0.5 m/s for Ph(ZrTi) —x)Oxy
doped with 2.1 at.% of Fe.

tional resistances, Rg and R, in the equivalent clectrical
cireuit of a PZT sample arc separately plotted as a fune-
tion of vibration velocity, Note that R, mainly related to
the extensive mechanical loss, is ingensitive to the vibra-
tion velocity; and Ry, related to the extensive dielectric
loss, increases significantly around a certain critical vibra-
tion velocity. Thus, the resonance loss at a small vibration
velocity is mainly determined by the extensive mechanical
loss which provides a high mechanical quality factor Qu,
and with increasing vibration velocity, the extensive di-
clectric loss contribution significantly increases. After Ry
exceeds Ry, we started to observe heat generation.

Tashiro ef al. [7] observed the heat generation in a rect-
angular piczoelectric plate during a resonating drive. Even
thongh the maximuin electrie filed is not very large, heat
is gonerated duc to the large induced strain/stress al the
resonance. The maximum heat generation was observed
at the nodal point of the resonance vibration, at which
the maximum strain/stress are generated. This observa-
tion supports that the heat generation in a resonating sam-
ple is attributed to the intensive elastic loss tan ¢/, This
is not contradictory to the result in Section IV, in which
a high-voltage was applied at an off-resonance frequency.
We concluded there that the heat is originated from the
intensive dielectric loss tand’. In consideration that both
the “infensive” diclectric and mechanical losses are com-
posed of the “oxtensive” dielectric and mechanical loss
and that the extensive diclectric loss tand changes sig-
nificantly with the external clectric ficld and stress, the
major contribution to the heat gencration scems to come
[rom the “extensive” diclectric loss. Further investigations
arc needed for the microscopic explanations of this phe-
NOMENOIL.
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Ra, (directly measured)
=Rda+RBm
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Fig. 17. Vibration velocity dependence ol the resistances R and Ry
in the equivalent clectric circuit for a PZT sample.

VI. LOSsES Al RESONANCE AND
ANTIRISONANCT MODES

A. Losses at o Piezoclectric Antiresonance State

We counsider here the losses at the antiresonance fre-
quency in comparison with the resonance mode. The an-
tiresonance mode is obtained at a frequency that provides
the minimum value of admittance Y, instead of zero of Y
for the loss-free case. Taking an approximation technigue
on (72) around the antliresonance frequeucy wy, similar to
the previous section, we obtain:

Qa =wall/2v, AR = — Qa( 1) (85)
If kgy is not very large, the following relationship is ob-
tained:
Qa = wal/2v = (7/2)(1 + (4/7?) K5)). (86)
In the following approximation, however, this relation is
not used; but we will neglect the higher order of AQ and
tan ¢’ in (72), yiclding {87) (top of next page). Taking into
account (88) and (89) (top of next page), where

K3 =15, /(1 - ki) (90)
Then, Y™ can be obtained at AQ = 0:
YR = G0q(1/2) tan ¢ (QF + K2 + K3,) /K3,
(91)
V2 Y™ can be obtained at:
AQ = (1/2)Qatang’. (92)
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Y = jwCa {1+ (k§, /(1 — 1)) tan[(n + AQ)(1 — j(1/2) tan &)}/

[(24 + AQ)(1 - j(1/2) tan ¢)]. (87)
tan[(Qa + AQ)(L — j(1/2) tan ¢')]
= [(Q4 — K5 AQ +(1/2)Qa tan ¢'K5; /[(—K5; — QaAQ) — jQa(1/2)0Q4 tan ¢'), (88)
Y = jwCa(QF + K3 + K1) [~ AQ +j(1/2)0 tan ¢}/
[~KG10a — (93 + K5)AQ +j(1/2)04 tan ¢/ (23 +K3,)], (89)
Thus, mechanical quality factor at the antircsonance can B
be obtained as: 2000 140
: g
Qun = /200 = (tan gr) ™, (93) § 1s00r A 1305
] - i 8
w \ i
Qm at the antiresonance could be verified to be equal £ 1000F 25@ 120 &
to Qu at the resonance (= (tané’)™') in the first ap- g TEST‘;SAMPLI; B
proximation neglecting the higher order terms more than 500 A-type\ § 410 3
2 2 . ; " B § =
(AQ)?, (tan ¢')? etc. However, this result shows a discrep- S e ©
. . . Temperature . B-type I—
ancy with the experimental results as discussed below. Fur- 0 | i ‘ 0
ther higher order approximation analysis will be required. 0.01 002 005 041 02 05 1

B. Ezperimental Results

Fig. 18 illustrates mechanical quality factors, Qa, Qg
and the temperature rise for the resonance (A-type) and
the antiresonance (B-type) modes for a rectangular-shaped
hard PZT resonator plotted as a function of vibration
velocity [6]. The sample size is indicated in Fig. 18
(43 mm x 7 mm x 2 mm). Note that an “effoctive” vibra-
tion velocity vq is a material’s constant independent of the
sample size, and it is defined a8 /27 f sy where f is the
resonance or antiresonance frequency and .y is the max-
imum vibration amplitude of the piezoelectric device [8].
Again it is noteworthy that the mechanical quality factor
decreases significantly above a certain critical vibration ve-
locity (0.1 m/s), at which a steep temperature rise starts.
‘We have suggested that the heat generation is mainly at-
tributed to the extensive dielectric loss rather than the
mechanical loss. Note also that Qp is higher than Q4 over
the entire vibration velocity range, and that the temper-
ature rise of the sample is less for the B-type resonance
(antiresonance) than for the A-type resonance for the same
vibration level. This indicates an intriguing idea that the
antiresonance mode should be superior to the conventional
resonance mode, particularly for high-power applications
such as ultrasonic motors. In a typical piezoelectric mate-
rial with kg; around 30%, the plate edge is not a vibration
nodal point and can generate a large vibration velocity.

Vibration Velocity vo (m/s)

Fig. 18. Vibration vclocity dependence of the quality factor Q
(Qa,Qp) and temperature rise for both A (resonance) and B {an-
tiresonance) type resonances of a longitudinally vibrating PZT co-
ramic transducer through the transverse piezoelectric effect day,

VII. CONCLUSIONS

Various techniques for measuring the electric, mechani-
cal, and piezoelectric coupling losses separately have been
discussed:

e Dvs. I, zvs X, xzvs. Eand D vs. X curves for
dielectric, mechanical, and piezoeloctric losses,

« heat generation at a resonance or an off-resonance fre-
quency for an intensive mechanical or dielectric loss,

« resonance/antiresonance technique for intensive and
extensive mechanical losses, respectively.

By combining the above methods, we can investigate the
loss mechanisms in practical piezoelectric materials.

The piezoelectric losses tan 6’ and tan 8 are not as small
as previously believed, but they are comparable to the di-
electric and elastic losses in soft PZTs. Also, it is notewor-
thy that the extensive dielectric toss tan § incrcases signifi-
cantly with an increase of the intensive parameter, i.e., the
applied electric ficld; and the extensive elastic loss tan ¢
is rathor insensitive to the intensive parameter, i.e., the
applied compressive stress.
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Heat generation is caused mainly by the intensive dielec-
tric loss tan 8’ (i.c., P-E hysteresis loss) for an off-resonance
state under a high-drive, clectric field, and by the intensive
mechanical loss tan ¢’ for a resonance state. Both situa-
tions are attributed to the large “extensive diclectric loss”
enhanced by a large external electric field or stress. In or-
dor o suppress the temperaturc rise practically, a trans-
ducer design with larger surface area is rccommended (for
example, a tube rather than a rod).

A significant deerease in mechanical Qm with an in-
crease of vibration level was observed in resonant piezo-
electric ceramic devices, and the data obtained by a con-
ventional impedance analyzer with a small voltage/power
do not provide data relevant to high-power materials.

Because the mechanical guality factor Qp at an an-
tircsonance frequency is larger than Qa at a resonance
frequency, the antiresonance mode seems to be superior to
the conventional usage of the resonance mode, particularly
for high-power applications such as ultrasonic motors.

Because the above conclusions were derived from only a
limited number of PZT-based soft and hard piezoelectrics,
it 15 t00 early to generalize these conclusions. I'urther in-
vestigations are highly required.
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