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1. INTRODUCTION

The most important acoustic quantity is the sound pressure, which is an acoustic first-
order quantity. However, sources of sound emit sound power, and sound fields are also energy
fields in which potential and kinetic energies are generated, transmitted and dissipated. In spite
of the fact that the radiated sound power is a negligible part of the energy conversion of almost
any sound source, energy considerations are of enormous practical importance in acoustics. In
‘energy acoustics’ sources of noise are described in terms of their sound power, acoustic
materials are described in terms of the fraction of the incident sound power that is absorbed, and
the sound insulation of partitions is described in terms of the fraction of the incident sound power
that is transmitted, the underlying assumptions being that these properties are independent of the
particular circumstances. None of these assumptions is true in the strict sense of the word.
However, they are usually good approximations in a significant part of the audible frequency
range, and alternative methods based on linear quantities are vastly more complicated than the
simple energy balance considerations of energy acoustics.

Sound intensity is a measure of the flow of acoustic energy in a sound field. More
precisely, the sound intensity I is a vector quantity defined as the time average of the net flow of
sound energy through a unit area in a direction perpendicular to the area. The dimensions of the
sound intensity are energy per unit time per unit area (W/m?). Although acousticians have
attempted to measure this quantity since the 1930s, the first reliable measurements of sound
intensity under laboratory conditions did not occur until the middle of the 1970s. Commercial
sound intensity measurement systems came on the market in the beginning of the 1980s, and the
first international standards for measurements using sound intensity and for instruments for such
measurements were issued in the middle of the 1990s. A description of the history of the
development of sound intensity measurement is given in Fahy’s monograph Sound Intensity (see
the bibliography).

The advent of sound intensity measurement systems in the1980s has had a significant
influence on noise control engineering. Sound intensity measurements make it possible to
determine the sound power of sources without the use of costly special facilities such as anechoic
and reverberation rooms, and sound intensity measurements are now routinely used in the
determination of the sound power of machinery and other sources of noise in situ. Other
important applications of sound intensity include the identification and rank ordering of partial
noise sources, visualisation of sound fields, determination of the transmission losses of partitions,
and determination of the radiation efficiencies of vibrating surfaces.

The sound intensity method is not without problems, though. Some people consider the
method very difficult to use, and it cannot be denied that more knowledge is required in
measuring sound intensity than in, say, using an ordinary sound level meter. The difficulties are
mainly due to the fact that the accuracy of sound intensity measurements with a given
measurement system depends very much on the sound field under study. Another problem is that
the distribution of the sound intensity in the near field of a complex source is far more
complicated than the distribution of the sound pressure, indicating that sound fields can be much
more complicated than earlier realised. The problems are reflected in the extensive literature on
the errors and limitations of sound intensity measurement and in the fairly complicated
international and national standards for sound power determination using sound intensity, ISO
9614-1, 1SO 9614-2, ISO 9614-3 and ANSI S12.12.

The purpose of this note is to give a brief but nevertheless relatively detailed overview
of sound intensity and its measurement and applications.



2. SOUND FIELDS, SOUND ENERGY AND SOUND INTENSITY

It can be shown [1] that the instantaneous potential energy density in a sound field (the
potential sound energy per unit volume) is given by the expression
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where p(t) is the sound pressure as a function of time, p, is the equilibrium density of the
medium, and c is the speed of sound. This quantity describes the energy stored in a unit volume
of the medium because of compression or rarefaction; the phenomenon is analogous to the
potential energy in a compressed or elongated spring.

The instantaneous kinetic energy density in a sound field (the kinetic energy per unit
volume) is [1, 2]
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where u(t) is the magnitude of the particle velocity vector u(t). This quantity describes the energy
per unit volume represented by the moving mass of the particles of the medium.

The instantaneous sound intensity is the product of the sound pressure and the particle
velocity,

1) = p(Hu(?). (2.3)

This quantity, which is a vector, expresses the magnitude and direction of the instantaneous flow
of sound energy per unit area, as shown in the following.

2.1 Conservation of sound energy
The divergence of the instantaneous sound intensity I(t) is

V-I@) =V (p()u@®) = p(OV - u(@) +u(@) - Vp(®). (2.4)

If we combine the linearised equation of conservation of mass,
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where p s the instantaneous density of the medium, with the adiabatic relation between changes
in the sound pressure and in the density,

o _ 208 (2.6)
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we can derive a relation between the divergence of the particle velocity and the rate of change
of the sound pressure, needed in evaluating the first term of the right-hand side of eq. (2.4):
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To calculate the second term we need Euler’s equation of motion (conservation of momentum),
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Inserting eqgs. (2.7) and (2.8) into eq. (2.4) gives
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For simplicity, the equilibrium density has here and in what follows been written as o rather than
Po- The quantity in the right-hand parenthesis is recognised as the sum of the instantaneous
potential energy density and the instantaneous kinetic energy density, so all in all it can be
concluded that
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where w(t) is the total instantaneous energy density.* This is the equation of conservation of
sound energy, which expresses the simple fact that the rate of decrease of the sound energy
density at a given position in a sound field (represented by the right-hand term) is equal to the
rate of the flow of sound energy diverging away from the point (represented by the left-hand
term).

That eq. (2.10) represents a conservation law is perhaps easier to see from the global
version. This is obtained using Gauss’s theorem, according to which the net outflow of sound
energy integrated over a given volume equals the total net outflow of sound energy through the
surface of the volume,

fV-I(t)dV = fl(t)-ds, (2.11)
4 N

where S is the area of a surface around the source and V is the volume contained by the surface.
Combining with eq. (2.10) gives
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which shows that the total net outflow of sound energy through the surface equals the (negative)
rate of change of the total sound energy within the surface, E. In other words, the rate of change
of the sound energy within a closed surface is identical with the surface integral of the normal

! The derivation based on the linarised acoustic equations (2.5), (2.6) and (2.7) is due to Kirchhoff.
Strictly speaking the acoustic energy corollary (eq. (2.10)) should be derived on the basis of the full, non-linear
equations rather than the linearised equations, and afterwards reduced to second order. However, since various
terms cancel out the result is the same [1-3].



component of the instantaneous sound intensity, 1(t).
In practice we are often concerned with the time-averaged sound intensity in stationary
sound fields. For simplicity we use the symbol I for this quantity (rather than T), that is,

I = p(®u(, (2.13)

where the bar indicates averaging with respect to time. Examination of eq. (2.10) leads to the
conclusion that the divergence of the time averaged sound intensity is identically zero,

V-l =0, (2.14)

and that the time-average of the instantaneous net flow of sound energy out of a given closed
surface is zero unless there is generation or dissipation of sound power within the surface, that
is,

fI-dS =0, (2.15)
S

irrespective of the presence of sources outside of the surface. If the surface encloses a steady
sound source that radiates the sound power P, then the time-average of the net flow of sound
energy out of the surface is equal to the net sound power of the source, that is,

fI~dS =P, (2.16)
S

irrespective of the presence of other steady sources outside the surface and irrespective of the
shape of the surface. This important equation is the basis of sound power determination using
sound intensity.

Example 2.1
If we add a source term corresponding to monopole with the volume velocity Q at the position r, to the
right-hand side of eq. (2.5) it becomes

pV-u+% = pQd(r - 1y
(see, eg, refs. [4, 5]). Combining with egs. (2.4), (2.6) and (2.8) gives
v = - 20 4 pose -1y,

and when this is integrated over a volume and use is made of Gauss’s theorem the result is
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when r, is outside the closed integration surface and
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when r, is inside the surface. If the monopole is emitting a stationary signal averaging over time gives

fI-dS = lim ptry) Q@) = P,,
S l'—’l'o

where P, is the sound power of the monopole (see, eg, ref. [5]). See also examples 2.3 and 2.4.



Example 2.2
In a sound field generated by two sources we can write

p@®) = pi() + p(®
and

u(®d = u,(f) + uyd

(linear superposition), from which it follows that

I-= (p1(t) + pz(t))(ul(t) + uz(t)) = I] + 12 + p1u2(t) + p2u1(t)-

Note that when the sources are uncorrelated the two sound intensity vectors are simply added, since the time average
of each cross term is zero. However, this is not the case when the sources are correlated.

2.2 Other important relations
If the sound field is harmonic with angular frequency w = 2nf we can make use of the
usual complex representation of the sound pressure and the particle velocity,

p(® = Re{p}, u/(f) = Re{d,}. (2.17a, 2.17b)

(For simplicity we consider only the component of the particle velocity in the r-direction here.)
Expressed in terms of these quantities eq. (2.13) becomes

I = %Relpa} = (i, +pa) = vlpl|i | Refe %) = |p| |4, | cosp, (2.18)

where #, denotes the complex conjugate of 7., and ¢ is the phase angle between the sound
pressure and the particle velocity (see Appendix A).

In a plane progressive wave the sound pressure and the particle velocity are in phase (¢
= 0) and related by the characteristic impedance of the medium, oc:

p = peil,. (2.19)

Thus for a plane wave the sound intensity is

I, = p@u, @) = p>(®)/pc = 2 |p|* pc = pml pe. (2.20)

In this case the sound intensity is simply related to the mean square sound pressure prfns, which
can be measured with a single microphone.? Equation (2.20) is also valid in the simple spherical
sound field generated by a monopole source in free space, irrespective of the distance to the
source. However, in the general case the sound intensity is not simply related to the sound
pressure, and both the sound pressure and the particle velocity must be measured simultaneously
and their instantaneous product time-averaged. This requires the use of a more complicated
device than a single microphone.

Example 2.3

2 As shown in Appendix B eq. (2.20) also implies that L, = L, under normal ambient conditions.
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The divergence of the time averaged sound intensity can be written
V-1=%WV-@Fi*+p*a) = u@vV-a*+p*vV-a+a*-Vp+i-Vp").

Expressed in complex notation egs. (2.7) and (2.8) become

V-ii = _ﬁﬁ
pc?

and
Vp = - jwpu.

When these two equations are inserted into the expression for the divergence of | eq. (2.14) results.

Example 2.4
Adding a source term corresponding to a harmonically varying monopole with the volume velocity Q at
the position r, to the right-hand side of the expression for the divergence of the particle velocity gives

Vi = - @ + QeI8(r - 1))
pc
(cf. example 2.1). The divergence of the time averaged sound intensity now becomes

@) = %@ + p0)

and the integral over a volume closed by the surface S becomes

if ry is outside S

, ifryisinside S.

0
fVV'IdV ) st.dS ) {lim v Re{p(r)Qe "'} = P

r-r,

Example 2.5
In a simple spherical sound field we have the following relation between the sound pressure and the
particle velocity,

i, = v ( 1+ i) .
pe ikr
It is apparent that the component of the particle velocity in phase with the sound pressure is p/pe, just as in a plane
propagating wave, which explains why the sound intensity equals |5|*/2pc.
Example 2.6
The free-field method of estimating the sound power of a source relies on the fact that the plane wave

expression for the sound intensity, eq. (2.20), is a good approximation sufficiently far from any finite source in free
space (the sound field becomes ‘locally plane’). In practice an anechoic room is required.

For later reference we will derive a relation between the sound intensity and the gradient
of the phase of the sound pressure in a harmonic sound field. If we write the complex sound
pressure in the form of an amplitude and a phase,

p = |ple’?, (2.21)

and make use of Euler’s equation of motion, eqg. (2.8), then the expression for the sound intensity
becomes

10
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which shows that the sound intensity equals the product of pnzns/ pc and the gradient of the phase
of the sound pressure normalised with the wavenumber. Inspection of this equation leads to the
interesting conclusion that the time-averaged sound intensity is orthogonal to the wavefronts, that
is, surfaces of constant phase in the sound field [6].

Example 2.7
The sound pressure at a distance r from a monopole point source with volume velocity Q is

b= IPaQ e - k).
4nr
Note that the gradient of the phase in the r-direction equals - k, just as in a plane propagating sound wave. Inserting
in eq. (2.22) shows that
b1,
2

I =

R

cf. example 2.5.

2.3 Active and reactive sound intensity

In spite of the diversity of sound fields encountered in practice, some typical sound field
characteristics can be identified. For example, the sound field far from a source under free-field
conditions has certain well-known properties, the sound field near a source has other
characteristics, and some characteristics are typical of a reverberant sound field, etc.

We have seen that the sound pressure and the particle velocity are in phase in a plane
propagating wave. This is also the case in a free field, sufficiently far from the source that
generates the field. Conversely, one of the characteristics of the sound field near a source is that
the sound pressure and the particle velocity are partly out of phase (in quadrature). To describe
such phenomena one may introduce the concept of active and reactive sound fields.

It takes four second-order quantities to describe the distributions and fluxes of sound
energy in a sound field completely [6-8]: potential energy density, kinetic energy density, active
intensity (which is the quantity we usually simply refer to as the intensity), and reactive intensity.
The last mentioned of these quantities represents the non-propagating, oscillatory sound energy
flux that is characteristic of a sound field in which the sound pressure and the particle velocity
are in quadrature, as for instance in the near field of a small source. The reactive intensity is a
vector defined as the imaginary part of the product of the complex pressure and the complex
conjugate of the particle velocity,

J - wIm{pi*} (2.23)

(cf. eq. (2.18)). More general time-domain formulations based on the Hilbert transform are also
available [8]. Unlike the usual active intensity, the reactive intensity remains a somewhat

11



controversial issue although the quantity was introduced half a century ago [9], perhaps because
the vector J has no obvious physical meaning [10], or perhaps because describing an oscillatory
flux by a time-averaged vector seems peculiar to some. However, even though the reactive
intensity is of no obvious direct practical use it nevertheless is quite convenient that we have a
quantity that makes it possible to describe and quantify the particular sound field conditions in
the near field of sources in a precise manner.

Very near a sound source the reactive field is usually stronger than the active field.
However, the reactive field dies out rapidly with increasing distance to the source. Therefore,
even at a fairly moderate distance from the source, the sound field is dominated by the active
field. The extent of the reactive field depends on the frequency, and the dimensions and the
radiation characteristics of the sound source. In practice, the reactive field may be assumed to be
negligible at a distance greater than, say, half a metre from the source.

@ ﬂ

Pressure and particle velocity
o

(b)

Instantaneous intensity

Intensity

0 31.25
Time (ms)

Figure 2.1 Mea-
surement in an active sound field (from reference [11]). (a) —, Instantaneous sound pressure; - - -, instantaneous
particle velocity multiplied by pc. (b) Instantaneous sound intensity. (c) ——, Real part of ‘complex instantaneous

intensity’; - - -, imaginary part of ‘complex instantaneous intensity’. One-third octave noise with a centre frequency
of 1 kHz.

Example 2.8
From example 2.5 we can calculate the specific impedance at a distance r from a monopole:

__ pc

z =2 -__P°
1 + Ljkr

s

S|
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Apparently, this quantity is almost purely imaginary when kr << 1, indicating that the sound pressure and the particle
velocity are nearly 90° out of phase in the nearfield of the source. Note that the specific impedance is mass-like
under such condition, that is, proportional to jw, in agreement with the fact that the radiation impedance of a
monopole is dominated by the mass term.
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Figure 2.2 Measurement in a reactive sound field (from reference [11]). Key as in figure 2.1. One-third octave noise
with a centre frequency of 250 Hz.

Figures 2.1, 2.2 and 2.3 demonstrate the physical significance of the active and reactive
intensities. Figure 2.1 shows the result of a measurement at a position about 30 cm (about one
wavelength) from a small monopole source, a loudspeaker driven with a band of one-third octave
noise. The sound pressure and the particle velocity (multiplied by pc) are almost identical,
therefore the instantaneous intensity is always positive: this is an active sound field. In figure 2.2
is shown the result of a similar measurement very near the loudspeaker (less than one tenth of a
wavelength from the cone). In this case the sound pressure and the particle velocity are almost
in quadrature (90° out of phase), and as a result the instantaneous intensity fluctuates about zero,
that is, sound energy flows back and forth. This is an example of a strongly reactive sound field.
Finally figure 2.3 shows the result of a measurement in a reverberant room several metres from
the loudspeaker generating the sound field. Here the sound pressure and the particle velocity
appear to be uncorrelated signals; this is neither an active nor a reactive sound field; this is a
diffuse sound field.

If we combine egs. (2.21) and (2.23) we can derive a relation between the reactive

13



intensity and the gradient of the amplitude of the sound pressure, analogous to eq. (2.22):

3 = vim{pu‘} - %Im{"" (V5] -je J¢|p|\7¢)}
jwp
(2.24)
A
2wp 4pck

This equation shows that the reactive intensity is orthogonal to surfaces of equal sound pressure
amplitude [6].

—e—m=

Pressure and particle velocity

\ (b)

Instantaneous intensity
o
l

Intensity

0 Time (ms) 625

Figure 2.3 Measurement in a diffuse sound field (from reference [11]). Key as in figure 2.1. One-third octave noise
with a centre frequency of 500 Hz.

The fact that | is the real part and J is the imaginary part of “2pi * has lead to the
concept of complex sound intensity,

I +jiJ = %pir. (2.25)

Note the interesting relation

14
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2+ |32 = %. (2.26)
A ‘complex instantaneous intensity’ has also been suggested. As can be seen from
figures 2.1 (c), 2.2 (c) and 2.3 (c) the real and imaginary parts of this quantity represent the
envelopes of the active and reactive instantaneous intensity. See reference [11] for an overview
of the various ‘sound intensities’.

3. MEASUREMENT OF SOUND INTENSITY

It is far more difficult to measure sound intensity than to measure sound pressure. One
problem is that the accuracy depends strongly on the sound field under study; under certain
conditions even minute imperfections of the measuring equipment will have a significant
influence on the results. With hindsight the 50-year delay from Olson submitted his application
for a patent for an intensity meter in 1931 to commercial measurement systems came on the
market in the beginning of the 1980s is therefore not surprising. See chapter 2 in Fahy’s Sound
Intensity.

3.1 Measurement principles

Attempts to develop sound intensity probes based on the combination of a pressure
transducer and a particle velocity transducer have occasionally been described in the literature.
However, no convincing experimental results obtained with p-u probes have been presented so
far, although a device that combined a pressure microphone with a transducer based on the
convection of an ultrasonic beam by the particle velocity ‘flow” was produced by Norwegian
Electronics for some years. More recently a micro-machined hot wire anemometer called the
‘microflown’ has become available for measurement of the particle velocity, and a ‘low cost
sound intensity’ probe based on this device is now in commercial production [12, 13]. One
problem of any particle velocity transducer, irrespective of the measurement principle, is the
strong influence of airflow. Another unresolved problem is how to determine the phase correction
that is needed when two fundamentally different transducers are combined. All sound intensity
measurement systems in commercial production today except the microflown device are based
on the ‘two-microphone’ (or ‘p-p’) principle, which makes use of two closely spaced pressure
microphones and relies on a finite difference approximation to the sound pressure gradient, and
the IEC 1043 standard on instruments for the measurement of sound intensity, which was
published in 1993, deals exclusively with the p-p measurement principle. Accordingly, all the
considerations in this chapter concern this measurement principle.

The p-p measurement principle employs two closely spaced pressure microphones. The
particle velocity is obtained through Euler’s relation, eq. (2.8), as

. ¢ pZ(T) - p1(7'-)
a(f) = - ————~dr, 3.1

e (3.1)
where p, and p, are the sound pressure signals from the two microphones, Ar is the microphone
separation distance, and 7 is a dummy time variable. The caret indicates the finite difference
estimate, which of course is an approximation to the real sound pressure gradient. The sound
pressure at the centre of the probe is estimated as

15



) = %@ + p0) (3.2)

and the time-averaged intensity component in the axial direction is, from egs. (3.1), (3.2) and
(2.13),

=502, = o B0 + O (A () -py () (33)

Some sound intensity analysers use eq. (3.3) to measure the intensity in frequency bands (one-
third octave bands, for example). Another type calculates the intensity from the imaginary part
of the cross spectrum of the two microphone signals, S,,,

f(@) = - —L— Imls,, (@) (3.4)

wpAr

8705388

Figure 3.1 Sound intensity probe manufactured by Briel & Kjar. The microphones are ‘face-to-face’.

The time domain formulation is equivalent to the frequency domain formulation, and in principle
eq. (3.4) gives exactly the same result as eq. (3.3) when the intensity spectrum is integrated over
the frequency band of concern.® The frequency domain formulation, which makes it possible to

% This follows from the fact that eq. (3.3) expressed in the frequency domain has the form

o] 511(@) - Sp(@) + Sy(w) - S y(w)

S 1 e 1
I = —| S, (wdw = dw
r 2nf-m 21,() 4npArf-m jw
1 fw Sl?(w) o= - 1 fw Im{S, (o)} do,
2npArt-- jo 2 pArJ-« w

where the last quation sign follows from the fact that only the imaginary part of the cross spectrum (which is an odd function
of the frequency) contributes to the integral.
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determine sound intensity with a dual channel FFT analyser, was derived independently by Fahy
and Chung in the late 1970s [14, 15].

The most common microphone arrangements are known as ‘face-to-face’ and ‘side-by
side’. The latter arrangement has the advantage that the diaphragms of the microphones can be
placed very near a radiating surface, but the disadvantage that the microphones disturb each
other. At high frequencies the face-to-face configuration with a solid spacer between the
microphones is superior [16]. A face-to-face sound intensity probe produced by Briel & Kjer
is shown in figure 3.1. The “spacer’ between the microphones stabilises the “acoustic distance’
between them.

3.2 Errors and limitations in measurement of sound intensity

There are many sources of error in the measurement of sound intensity, and a
considerable part of the sound intensity literature has been concerned with identifying and
studying such errors. Some of the sources of error are fundamental and others are associated with
various technical deficiencies. As mentioned, one complication is that the accuracy depends very
much on the sound field under study; under certain conditions even minute imperfections in the
measuring equipment will have a significant influence. Another complication is that small local
errors are sometimes amplified into large global errors when the intensity is integrated over a
closed surface, as pointed out by Pope [17].

The following is an overview of some of the sources of error in the measurement of
sound intensity. Literature with more detailed discussions is listed in the bibliography.

Those who make sound intensity measurements should know about the limitations
imposed by

® the finite difference error [18],

® errors due to scattering and diffraction [16, 19], and

® instrumentation phase mismatch [15, 20, 21].

Airflow can be a problem, and strictly speaking the p-p measurement principle is simply
not valid in a moving medium [22]. However, the resulting error is negligible if the speed of the
flow is less than, say, 10 m/s. Under such conditions the main problem caused by the airflow is
that the measurements are affected by

® additive “false’ intensity signals caused by turbulence at low frequencies [23].

A windscreen on the sound intensity probe reduces the problem of flow-induced false intensity
signals, but under some circumstances

® bias errors caused by the losses of the windscreen [24]
will occur.

In measurement of sound intensity at discrete points one should be aware of the

® random errors associated with a given finite averaging time [25, 26],
which tend to be larger than the corresponding errors in measurement of the sound pressure, and
sometimes very much larger. If the sound intensity level is low, say, less than 50 dB, one should
be aware of an additional

® random error caused by electrical noise in the microphones [27],
which in practice can make the measurement impossible at low frequencies.

An finally, if ordinary condenser microphones are used rather than microphones with
reduced vent sensitivity [28], a

® bias error caused by the microphones pressure equalisation vent [29]
can also occur.

17



Errors due to the finite difference approximation

The most fundamental limitation of the p-p measurement principle is due to the fact that
the sound pressure gradient is approximated by a finite difference of pressures at two discrete
points. This obviously imposes an upper frequency limit that is inversely proportional to the
distance between the microphones. The resulting bias error depends on the sound field in a
complicated manner [18]. In a plane sound wave of axial incidence the finite difference error, that
is, the ratio of the measured intensity 1. to the true intensity |, can be shown to be [30]

sin kAr

I/ = 3.5
r r kAr ( )
L) 1 l L) L) I ¥ ] l' 1] i l 1] ¥ I
) S N
s T 0 == LRI
s =2 [ ST
e = I ~ \\ ~ N
I.LI § B \'\ \ . i
c \ \ -
— L . \ .
-5 R T N S T B TR S N S l Ly |
0.25 0.5 1 2 4 8
Frequency (kHz)

Figure 3.2 Finite difference error of an ideal two-microphone sound intensity probe in a plane wave of axial
incidence for different values of the separation distance. —, 5 mm; ---,85mm; ----, 12 mm; — —, 20 mm;
— - — -, 50 mm. (From reference [16].)
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Figure 3.3 Error of a sound intensity probe with half-inch microphones in the face-to-face configuration in a plane
wave of axial incidence for different spacer lengths. —, 5 mm; ---, 85 mm; --- -, 12 mm; — —, 20 mm;
— - — -, 50 mm. (From reference [16].)
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This relation is shown in figure 3.2 for different values of the microphone separation distance.
The upper frequency limit of intensity probes has generally been considered to be the frequency
at which this error is acceptably small. With 12 mm between the microphones (a typical value)
this gives an upper limiting frequency of about 5 kHz.

Errors due to scattering and diffraction

Equation (3.5) is correct for an ideal sound intensity probe that does not in any way
disturb the sound field. In other words, the interference of the microphones on the sound field has
beenignored. This would be a good approximation if the microphones were small compared with
the distance between them, but it is not a good approximation for a typical sound intensity probe
such as the one shown in figure 3.1. The high frequency performance of a real, physical probe
is obviously a combination of the finite difference error and the effect of the probe itself on the
sound field. In the particular case of the face-to-face configuration it turns out that the two effects
to some extent cancel each other for a certain geometry; a recent numerical and experimental
study has shown that the upper frequency limit of such an intensity probe can be extended to
about an octave above the limit determined by the finite difference error if the length of the
spacer between the microphones equals the diameter. The physical explanation is that the
resonance of the cavities in front of the microphones gives rise to a pressure increase that to some
extent compensates for the finite difference error. Thus the resulting upper frequency limit of a
sound intensity probe composed of half-inch microphones separated by a 12-mm spacer is 10
kHz, which is an octave above the limit determined by the finite difference error when the
interference of the microphones on the sound field is ignored [16]; compare figures 3.2 and 3.3.
No similar serendipitous cancelling of errors occurs with the side-by-side configuration.

Instrumentation phase mismatch

Phase mismatch between the two measurement channels is the most serious source of
error in the measurement of sound intensity, even with the best equipment that is available today.
It can be shown that the estimated intensity, subject to a phase error ¢,, to a very good
approximation can be written as

2
;=g - e Pms (3.6)
kAr pc

that is, the phase error causes a bias error in the measured intensity that is proportional to the
phase error and to the mean square pressure [20]. Equation (3.6) is a consequence of eq. (2.22)
and can be derived by inserting the actual phase angle between the sound pressure signals in the
sound field plus the phase error due to the measurement system into this expression. Ideally the
phase error should be zero, of course. In practice one must, even with state-of-the-art equipment,
allow for phase errors ranging from about 0.05° at 100 Hz to 2° at 10 kHz. Both the IEC standard
and the North American ANSI standard on instruments for the measurement of sound intensity
specify performance evaluation tests that ensure that the phase error is within certain limits.

Example 3.1

Ina plane wave and in a simple spherical wave the gradient of the phase of the sound pressure in the
direction of propagation equals - k (cf. example 2.7). It follows that the physical phase difference between the
pressures at two points a distance of Ar apart is kAr. With 12 mm between the microphones this amounts to about
3° at 250 Hz. Obviously, the phase error introduced by the measurement system should be much smaller than that,
say, no larger than 0.3°. Moreover, as shown in example 3.2 the requirements are much stronger in an interference
field.

Example 3.2
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Equation (2.22) shows that the gradient of the phase of the sound pressure can be expressed in terms of
the ratio of the mean square pressure to the sound intensity,

I
99 _ K
or Poms

However, since the ratio (prfns/lrpc) may take values of up to, say, ten, under realistic measurement conditions it
follows that the phase gradient can easily be ten times smaller than in a plane propagating wave. In other words, it
is quite reasonable to require that the phase error of an intensity measurement system at 250 Hz is much smaller than
0.3°, that is, very small indeed; cf. example 3.1.

Equation (3.6) is often written in the form

, I 2
=1+ 1(p2 /P = 1| 1 + o Pme (3.7)
D, Irpc
where the residual intensity I, and the corresponding sound pressure p,,
I
> -2 (38)
pylpe kAr

have been introduced. The residual intensity is the ‘false’ sound intensity indicated by the
instrument when the two microphones are exposed to the same pressure p,, for instance in a small
cavity. Under such conditions the true intensity is zero, and the indicated intensity I, should
obviously be as small as possible. The right-hand side of eq. (3.7) clearly shows how the error
caused by phase mismatch depends on the ratio of the mean square pressure to the intensity in
the sound field — in other words on the sound field conditions.

Phase mismatch is usually described in terms of the so-called residual pressure-intensity
index,

pllpe

s 3.9
7, ¢9

d,, = 10 log

which is just a convenient way of measuring, and describing, the phase error ¢,. With a
microphone separation distance of 12 mm the typical phase error mentioned above corresponds
to a pressure-residual intensity index of 18 dB in most of the frequency range. The error due to
phase mismatch is small provided that

6p1 << 6pIo’

(3.10)
where

8,1 = 10 108(( s/ PCVL,) (3.11)

is the pressure-intensity index of the measurement. The inequality (3.10) is simply a convenient
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way of expressing that the phase error ¢, of the equipment should be much smaller that the phase
angle between the two sound pressure signals in the sound field. A more specific requirement can
be expressed in the form

8, <Ly=08, -K, (3.12)
where the quantity
Ly =8, - K, (3.13)

is called “the dynamic capability” of the instrument and K is “‘the bias error factor’. As can be
seen from the inequality (3.12) the dynamic capability indicates the maximum acceptable value
of the pressure-intensity index of the measurement for a given grade of accuracy. The larger the
value of K the smaller is the dynamic capability, the stronger and more restrictive is the
requirement, and the smaller is the error. From egs. (3.9) and (3.11) it follows that the inequality
(3.12) is equivalent to the requirement

I I
< L1079, (3.14)
pJpc  plpc

which corresponds to requiring that the phase error ¢, should be 10%*° times smaller than the
phase angle in the sound field. Combined with eq. (3.7) this inequality leads to the conclusion
that the condition expressed by the inequality (3.12) and a bias error factor of 7 dB guarantee that
the error due to phase mismatch is less than 1 dB; with K = 10 dB the error will be less than 0.5
dB [31]. These requirements correspond to the phase error ¢, being five and ten times less than
the actual phase angle in the sound field respectively.

Most engineering applications of sound intensity measurements involve integrating the
normal component of the intensity over a surface. Integrating both sides of eq. (3.7) over a
measurement surface S gives the expression

P, =P, + == f(prms/pc)dS=Pa 1+ §
S

> , (3.15)
JR P f I-dS
N

which shows that the global version of the inequality (3.12) can be written

A, <8, - K, (3.16)
where
A, =10 1og(f(pjns/pc)ds/f1-ds) (3.17)

is the global pressure-intensity index of the measurement. Comparing egs. (3.7) and (3.15) shows
that this quantity plays the same réle in sound power estimation as the pressure-intensity index
does in measurements at discrete points. Figure 3.4 shows examples of the global index measured
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under various conditions. Itis obvious that the presence of noise sources outside the measurement
surface increases the mean square pressure on the surface, and thus the influence of a given phase
error; therefore a phase error, no matter how small, limits the range of measurement.

In practice one should examine whether the inequality (3.16) is satisfied or not whenever
there is significant noise from extraneous sources. If the inequality is not satisfied it can be
recommended to use a measurement surface somewhat closer to the source than advisable in
more favourable circumstances. It may also be necessary to modify the measurement conditions
— to shield the measurement surface from strong extraneous sources, for example, or to increase
the sound absorption in the room. All modern sound intensity analysers can determine the
pressure-intensity index concurrently with the actual measurement, so one can easily check
whether phase mismatch is a problem or not. Some instruments automatically examine whether
the condition (3.16) (or (3.12) in a point measurement) is satisfied or not and give warnings when
this is not the case.
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Figure 3.4 The global pressure-intensity index 4, determined under three different conditions. —, Measurement
using a ‘reasonable’ surface; - - -, measurement using an eccentric surface; — — , measurement with strong
background noise. (From reference [32].)

Random errors associated with a given finite averaging time

Random errors due to incomplete time averaging reveal themselves by poor repeatabil-
ity. Such errors can be of concern in several applications of sound intensity measurements. The
averaging time needed to ensure a given accuracy depends very much of the local properties of
the sound field, and some positions will require a very long averaging time. This is not very
important if the sound intensity is averaged over a measurement surface, since the random errors
are largest at positions that do not contribute much to the surface integral [33]. However, it is
obviously inconvenient to use a very long averaging time at each point if the sound intensity is
to be mapped in front of a large, complicated source of noise. In fact, even if an automated
measurement system is available, the averaging time may be of concern, for example because the
sound source under study is not completely stable over a long period of time.

That the normalised random errors in sound intensity measurements can be much larger
than the theoretical minimum value of 1//BT known from mean square estimation, where B is
the bandwidth and T is the averaging time, was pointed out as early as in 1975 [34]. Some years
later theoretical expressions were derived that showed that the random errors can be very large
when the phase angle between two pressure signals from the sound intensity probe is small and
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the coherence of the signals is less than unity [25, 26].
It can be shown that the above mentioned additional random error due electrical noise
in the microphone signals can be written [27]

2
A lpc n n
€{Ir} - ]. ]. prms ™ms — 1 ]. ™ms (3.18)

JBT*Ar I, p.. /BT AP Py,

where n,.,, is the rms value of the noise signals that contaminate the microphone signals and A ¢
is the phase angle between the two pressure signals, cf. eq. (2.22). The right-hand side of the
equation shows that this error is inversely proportional to the signal-to-noise ratio and inversely
proportional to the phase angle between the two sound pressure signals, which can be very small
indeed; therefore, an averaging time of several minutes can be required even with a fairly large
signal-to-noise ratio. However, this is a problem only at low frequencies (say, below 100 Hz) and
at fairly low sound pressure levels, say, less than 40 dB re 1 pPa.

3.3 Testing and verification

By now it should be apparent that even a sound intensity probe of the highest quality will
give erroneous results under sufficiently difficult sound field conditions. A standardised
verification procedure therefore prescribes that the intensity probe should be exposed to the sound
field in a standing wave tube with a specified standing wave ratio; when the sound intensity probe
is drawn through this interference field the sound intensity indicated by the measurement system
should be within a certain tolerance.

The sound pressure in a one-dimensional interference field is

Bx) = p,'@ ™™ + ReJ@ ) = p (X8 + |R| eI ), (3.19)

where R is the reflection factor at the termination (see, eg, ref. [4]). The corresponding amplitude
is

5()| = VBB () = |p.|(1 + [R]* + 2|R|cos(2kx + ) (3.20)
(see figure 3.5). The particle velocity is [4]

i) = Piei@-m _ Rei@ k) - Pr i@k _ |pleifeierkry (39
¥ pc

and the corresponding amplitude is

p.|

ld(x)| = (1 + |R|? - 2|R]|cos(Rkx + 0))". (3.22)

The sound intensity in this interference field follows from eq. (2.18):

2
I, = %Relp)i; ()] = P p'c - [RP). (3.23)
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Figure 3.5 (a) Sound pressure level (—), particle velocity level (— —) and sound intensity level (— - —)
in a standing wave field with a standing wave ratio of 24 dB. (b) Estimation error of a sound intensity measurement
system with a residual pressure-intensity index of 14 dB (positive and negative phase error). (From reference [35].)

Figure 3.5 (a) illustrates how the sound pressure, the particle velocity and the sound
intensity vary with position in a one-dimensional interference field with a standing wave ratio of
24 dB. It is apparent that the pressure-intensity index varies strongly with the position in such a
sound field. Accordingly, the influence of a given phase error depends on the position. Figure 3.5
(b) shows how the sound intensity measured with a certain instrument will deviate from the true
value as a function of the position in a standing wave tube with a standing wave ratio of 24 dB,
which is the sound field specified in the IEC standard on sound intensity measurement systems.
According to this IEC standard deviations within an interval of + 1.5 dB are acceptable for ‘class
1 instruments’.

4. APPLICATIONS

Some of the most common practical applications of sound intensity measurements are
now discussed briefly.

Sound power determination

One of the most important applications of sound intensity measurements is the
determination of the sound power of operating machinery in situ. Sound power determination
using intensity measurements is based on eq. (2.16), which shows that the sound power of a
source is given by the integral of the normal component of the intensity over a surface that
encloses the source, also in the presence of other sources outside the measurement surface.
Neither an anechoic or a reverberation room is required. The analysis of errors and limitations
presented in section 3.2 leads to the conclusion that the sound intensity method is suitable

® for stationary sources in stationary background noise provided that

Ap] < 6p10 B K’

The method is not suitable
® for sources that operate in long cycles (because the sound field will change during the
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measurement)

® in non-stationary background noise (for the same reason)

o for weak sources of low frequency noise (because of large random errors caused by
electrical noise in the microphone signals).

The surface integral can be approximated either by sampling at discrete points or by
scanning manually or with a robot over the surface. With the scanning approach, the intensity
probe is moved continuously over the measurement surface in such a way that the axis of the
probe is always perpendicular to the measurement surface. The scanning procedure, which was
introduced in the late 1970s on a purely empirical basis, was regarded with much scepticism for
more than a decade [36], but is now generally considered to be more accurate and far more
convenient than the procedure based on fixed points [37]. A moderate scanning rate, say 0.5 ms™,
and a ‘reasonable’ scan line density should be used, say 5 cm between adjacent lines if the surface
is very close to the source, 20 cm if it is further away. One cannot use the scanning method if the
source is operating in cycles, though; both the source under test and possible extraneous noise
sources must be perfectly stationary.

Usually the measurement surface is divided into a number of segments, each of which
will be convenient to scan. One will often determine the pressure-intensity index of each segment,
and the accuracy of each partial sound power estimate will of course depend on whether the
inequality (3.16) is satisfied or not, but it follows from eq. (3.15) that it is the global pressure-
intensity index associated with the entire measurement surface that determines the accuracy of
the estimate of the (total) radiated sound power. It may be impossible to satisfy (3.16) on a certain
segment, for example because the net sound power passing through the segment takes a very
small value because of extraneous noise, but if the global criterion is satisfied then the total sound
power estimate will nevertheless be accurate.

Theoretical considerations seem to indicate the existence of an optimum measurement
surface that minimises measurement errors. In practice one uses a surface of a simple shape at
some distance, say 25-50 cm, from the source. If there is a strong reverberant field or significant
ambient noise from other sources, the measurement surface should be chosen to be somewhat
closer to the source under study.

Noise source identification and visualisation of sound fields

This is another important application of the sound intensity method. A noise reduction
project usually starts with the identification and ranking of noise sources and transmission paths,
and sound intensity measurements make it possible to determine the partial sound power
contribution of the various components directly. Two-dimensional contour plots of the sound
intensity normal to a measurement surface can be used in locating noise sources. Visualisation
of sound fields, helped by modern computer graphics, contributes to our understanding of
radiation and propagation of sound and of diffraction and interference effects. However, since
measurements at many discrete points are needed random errors associated with the finite
averaging time can be a problem, in particular at positions where the sound radiation is weak.

Transmission loss of structures and partitions

The conventional measure of the sound insulation of panels and partitions is the
transmission loss (also called sound reduction index), which is the ratio of incident to transmitted
sound power in logarithmic form. The traditional method of measuring this quantity requires a
transmission suite consisting of two vibration-isolated reverberation rooms. The sound power
incident on the partition under test in the source room is deduced from an estimate of the spatial
average of the mean square sound pressure in the room on the assumption that the sound field is
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diffuse, and the transmitted sound power is determined from a similar measurement in the
receiving room where, in addition, the reverberation time must be determined. The sound
intensity method has made it possible to measure the transmitted sound power directly using a
sound intensity probe. In this case it is not necessary that the sound field in the receiving room
is diffuse, which means that only one reverberation room (the source room) is necessary [38].
One cannot measure the incident sound power in the source room using sound intensity, since the
method gives the net sound intensity.

The main advantage of the intensity method over the conventional approach is that it is
possible to evaluate the transmission loss of individual parts of the partition. However, each
sound power measurement must obviously satisfy the condition

Ay <d, -K.

There are other sources of error than phase mismatch. For example, Roland has called
attention to the fact that the traditional method of measuring the sound power transmitted
through the partition under test gives the transmitted sound power irrespective of the absorption
of the partition, whereas the intensity method gives the net power [39]. If a significant part of the
absorption in the receiving room is due to the partition then the net power is less than transmitted
power. Under such conditions one must increase the absorption of the receiving room; otherwise
the intensity method will overestimate the transmission loss because the transmitted sound power
IS underestimated.

It has often been reported that the intensity method gives lower values of the
transmission loss than the conventional one at low frequencies and higher values at high
frequencies. However, this pattern has not been confirmed by a recent investigation in which very
good agreement was found from 80 Hz to 6.3 kHz [40].

As an interesting byproduct of the intensity method it can be mentioned that deviations
observed between results determined using the traditional method and the intensity method led
several authors to re-analyse the traditional method in the 1980s and point out that the
Waterhouse correction, well established in sound power determination using the reverberation
room method [41, 42], had been overlooked in the standards for conventional measurements of
transmission loss [43, 44].

Measurement of the emission sound pressure level

The “emission sound pressure level’ is the sound pressure level at an operator’s position
near a large machine. It has been suggested to deduce this level from sound intensity measure-
ments in order to reduce the influence of certain sources of error. A standard is under
development.

Measurement of absorption

In principle it should be possible to measure the sound absorption of materials in situ
using sound intensity, but so far this has generally been regarded as the least successful
application of the method. Recent results have indicated that it may be possible to do it, though,
but more work is needed.
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LIST OF SYMBOLS

B bandwidth [Hz]

c speed of sound [m/s]

E sound energy [J]

f frequency [Hz]

I sound intensity [W/m?]

I, component of sound intensity [W/m?]

fr finite difference estimate of sound intensity component [W/m?]
let reference sound intensity [W/m?]

I residual intensity [W/m?]

J reactive sound intensity [W/m?]

k wavenumber [m?]

K bias error factor [dB]

Ly dynamic capability [dB]

L, sound intensity level [dB re I ]

L, sound pressure level [dB re p,]

p sound pressure [Pa]

p sound pressure (complex representation) [Pa]

p finite difference estimate of sound pressure [Pa]
Pref reference sound pressure [Pa]

Prms rms sound pressure [Pa]

Po static pressure [Pa]

Po sound pressure used in determining the residual intensity [Pa]

P, sound power [W]

volume velocity of source [m?/s]

radial distance in cylindrical and spherical coordinate system [m]
gas constant [m?s2K™]; reflection factor [dimensionless]

area [m?]

cross spectrum of microphone signals [Pa®/Hz]

time [s]

averaging time [s]

particle velocity [m/s]

component of the particle velocity [m/s]

particle velocity (complex representation) [m/s]

finite difference estimate of particle velocity component [m/s]
volume [m?]

total energy density [J/m?]

potential energy density [J/m?]

kinetic energy density [J/m?]

specific impedance [kgm?s™]
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ratio of specific heats [dimensionless]
pressure-intensity index [dB]

hio residual pressure-intensity index [dB]
global pressure-intensity index [dB]
microphone separation distance [m]
phase angle of reflection factor [radian]
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£EL S

density [kgm~]

phase angle between sound pressure and particle velocity [radian]
phase angle of complex pressure [radian]

phase error [radian]

angular frequency [radian/s]

a finite difference estimate

complex representation of a harmonic variable
time averaging
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APPENDIX A: COMPLEX NOTATION

In a harmonic sound field the sound pressure is a function of the type cos(awt + ) at any
point. It is common practice to use complex notation in such cases. This is a symbolic method
that makes use of the fact that complex exponentials give a more condensed notation that
trigonometric functions because of the complicated multiplication theorems of the latter.

Complex representation of harmonic signals is based on Euler’s equation,

e = cosx + jsinx. (A1)

In a harmonic sound field the sound pressure can be written

where A is the complex amplitude of the sound pressure. The real, physical sound pressure is of
course a real function of the time,

p = Re{p} = Re{|A| ej(wtw“)} = |A|cos(at + @), (A3)

which is seen to be an expression of the form cos(wt + ¢). The magnitude of the complex quan-
tity |A| is called the amplitude of the pressure, and ¢, is its phase, and these two quantities
depend on the position in the sound field.

Acoustic second-order quantities involve time averages of squared harmonic signals and,
more generally, products of harmonic signals. Such quantities are dealt with in a special way, as
follows. Expressed in terms of the complex pressure amplitude p,the mean square pressure
becomes

N -  — — — A 2 ~12
P? = P = APoosar + g = L - 2L, (Ad)

in agreement with the fact that the average value of a squared cosine is %. Note that it is the
squared magnitude of p that enters into the expression, not the square of p,which is a complex
number proportional to e3**,

The time average of a product of harmonic signals is expressed as follows,

Xy =
(AS)

#[7Re{e’ @ %} = 112/ [5] cos (g, - ),

1
2

in agreement with the fact that
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xp = [%[cos(wx + @) [Flcos(ax + @) = — |%] [F]cos(q, - ¢,) - (A6)

1
2

Note that either X or y must be conjugated.
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APPENDIX B: LEVELS AND DECIBELS

The human auditory system can cope with sound pressure variations over a range of
more than a million times. Because of this wide range, the sound pressure and other acoustic
quantities are usually measured on a logarithmic scale. An additional reason is that the subjective
impression of how loud noise sounds correlates much better with a logarithmic measure of the
sound pressure than with the sound pressure itself. The unit is the decibel, abbreviated dB, which
is a relative measure, requiring a reference quantity. The results are called levels. The sound
pressure level is defined as

2
L, = 10log,, 2™ = 20 1og,, Zms, (B1)
pref pref

where p,.¢ is the reference sound pressure, and log,, is the logarithm to the base of 10, henceforth
written log. The reference sound pressure is 20 wPa for sound waves in air,* corresponding
roughly to the lowest audible sound at 1000 Hz.

The acoustic second-order quantities sound intensity and sound power are also measured
on a logarithmic scale. The sound intensity level is

L, = 101log ﬂ, (B2)

ref

where | is the intensity and 1., = 1 pWm™ = 10" Wm?, and the sound power level is

Pa
L, = 10log , (B3)

ref

where P, is the sound power and P; = 1 pW. Note than levels of linear quantities are defined as
twenty times the logarithm of the ratio of the rms value to a reference value, whereas levels of
second-order quantities are defined as ten times the logarithm, in agreement with the quadratic
relation between second-order and first-order quantities.

The simple relationship between the sound intensity and sound pressure in a plane
propagating wave and in a simple spherical sound field,

2
I = Pms, (B4)
poc

implies that the sound intensity level is approximately equal to the sound pressure level in air
under normal ambient conditions. This is due to the fact that the quantity ,oclref/prif is close to
unity (or that oc is close to 400 kgms™). With the relations

* For sound in other fluids than atmospheric air the reference sound pressure is 1 pPa.
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= % and ¢ = J7RT, (B5a, B5b)

where p, is the static pressure, y is the ratio of specific heats, R is the gas constant and T is the
absolute temperature, it follows that

2 y 1pW/m?
pel o/pee = Pos| == ———, (B6)

which is close to unity under normal ambient conditions; it equals 1.028 at 101.325 kPa and
296.15 K = 23°C. This factor corresponds to 0.12 dB, which is a small correction. Accordingly,

2
L,=L,- 10log(pcl ¢ /Prr) = L,-0.12 dB -~ L,

For the same reason the pressure-intensity index

2
prms/pc Y 1pW/IIl2
0,=101o =L -L, -10lo <4 & B7
24 g[ I ] ' I g(P(M RT (20uPay? (B7)

is sometimes written simply as L, - L,.
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APPENDIX C: STANDARDS FOR SOUND INTENSITY MEASUREMENTS

There are several international and national standards for the measurement of sound
intensity:

ISO (International Organization for Standardization) 9614-1 Acoustics — Determination of
Sound Power Levels of Noise Sources Using Sound Intensity — Part 1: Measurement at Discrete
Points, 1993.

ISO (International Organization for Standardization) 9614-2 Acoustics — Determination of
Sound Power Levels of Noise Sources Using Sound Intensity — Part 2: Measurement by
Scanning, 1996.

ISO (International Organization for Standardization) 9614-3 Acoustics — Determination of
Sound Power Levels of Noise Sources Using Sound Intensity — Part 3: Precision Method for
Measurement by Scanning, 2002.

IEC (International Electrotechnical Commission) 1043 Electroacoustics — Instruments for the
Measurement of Sound Intensity — Measurements with Pairs of Pressure Sensing Microphones,
1993.

ANSI (American National Standards Institute) S12.12-1992 Engineering Method for the
Determination of Sound Power Levels of Noise Sources Using Sound Intensity.

ANSI (American National Standards Institute) S1.9-1996 Instruments for the Measurement of
Sound Intensity.

ISO (International Organization for Standardization) 15186-1 Acoustics — Measurement of
Sound Insulation in Buildings and of Building Elements — Part 1: Laborary measurements, 2000.

ISO (International Organization for Standardization) 15186-2 Acoustics — Measurement of
Sound Insulation in Buildings and of Building Elements — Part 2: Field measurements, 2003.

ISO (International Organization for Standardization) 11205 Acoustics — Determination of

Emission Sound Pressure Levels In Situ at the Work Station and other Specified Positions Using
Sound Intensity, 2003.
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INDEX

Absorption, measurement of, 26
Acoustic energy

see Sound energy
Acoustic intensity

see Sound intensity
Active sound field, 11

see also Reactive sound field
Adiabatic compressibility, 6
Airflow, influence of, 17
Amplitude gradient, 13
Averaging time, 22

Bias errors, 17
Bias error factor, 21

Complex notation, 33

Complex sound intensity, 14
Conservation of mass, 6
Conservation of momentum, 7
Conservation of sound energy, 7

Diffraction, 19

Diffuse sound field, 13

Discrete points, measurements at, 25
Dynamic capability, 21

Electrical noise, effect of, 23
Emission sound pressure level, 26
Energy acoustics, 5

Euler’s equation of motion, 7

Face-to-face arrangement, 17

Far field approximation, 10

Finite difference approximation, 18
Free-field method, 10

Frequency domain formulation, 16
Frequency range of measurement, 19

Gauss’s theorem, 7
Global pressure-intensity index, 21

Hot wire anemometer, 15
Identification of sources, 25
Incoherent sources

see Uncorrelated sources
In-phase component, 10
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Instantaneous energy density, 7
Instantaneous sound intensity, 6
Interference field, 23
Impedance

characteristic, 9, 35

radiation, 11

specific, 11

Kinetic energy density, 6

Linearised acoustic equations, 7
Location of sources, 25

Measurement standards, 37
Measurement surface, 25
Microphone separation distance, 18

Nearfield characteristics, 11

Particle velocity, 6

Phase error, 19

Phase mismatch, 19

Phase gradient, 10

Plane wave, 9, 19

Potential energy density, 6

p-p measurement principle, 15
Pressure-intensity index, 20, 36
p-u measurement principle, 15

Quadrature, 13

Random errors, 17, 22

Rank order of sources, 25

Reactive sound field, 13

Reactive sound intensity, 11
Reference value, 35

Residual intensity, 20

Residual pressure-intensity index, 20

Scanning method, 25
Scattering
see Diffraction
Simple spherical field, 9, 10
Sound energy, 6
Sound intensity, 7
Sound power determination, 8, 24



Spacer, 17, 19
Standing wave tube, 23
Surface segments, 25
Superposition, 8

Testing and verification, 23
Time averaged sound intensity, 7, 10
Time domain formulation, 16
Transmission loss, 25
Two-microphone method

see p-p measurement principle

Uncorrelated sources, 8
Visualisation of sound fields, 25
Waterhouse correction, 26

Weak sources, 23, 25
Windscreens, 17
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