
ABSTRACT
Piezoelectric transducers serve as electromechanical transceiv-
ers in sonar, medical imaging, NDE, and signal processing
systems.  Despite their relative technical maturity, many op-
portunities for improvement and innovation remain.  To best
exploit these opportunities we need to augment standard de-
sign procedures based on 1D models and prototype experi-
ments.  Rigorous finite element computer modeling offers a
powerful adjunct to conventional methods, yet it has enjoyed
only limited acceptance despite major industry efforts.  One
reason is reliance on traditional implicit numerical algorithms
for frequency-domain analysis or time integration.  We present
an alternative mixed explicit/implicit algorithm for direct time-
domain integration of the 2D or 3D electromechanical equa-
tions.  On the same workstation it affords about two orders of
magnitude faster solutions or larger models than do available
implicit codes, and makes desktop transient device modeling
practical.  This paper reviews algorithms, presents validation cal-
culations, describes 2D and 3D array simulations, explores asso-
ciated wave propagation issues, and considers future directions.

INTRODUCTION
Piezoelectric transducers convert electrical signals to mechani-
cal signals and vice versa.  They serve as transmitters and re-
ceivers in imaging systems for sonar, medical, and NDE (non-
destructive evaluation) applications, as well as in nonimaging
applications like SAW (surface acoustic wave) devices in sig-
nal processing, e.g., see [1].  The piezoelectric transducer mar-
ket is broad and the technology, despite its relative maturity,
has great potential for improvement and innovation.

One of the most technically demanding applications is
ultrasound (ultrasonic) medical imaging.  Operational empha-
sis for imaging transducers is broadband (impulsive) rather than
narrowband (continuous wave).  Transducers are currently
available for diagnostic imaging and Doppler velocity mea-
surement, e.g., [2], as well as a host of specialty appli-cations
(intracavity, biopsy, etc.) including disease treatment (lithot-
ripsy, hyperthermia, tissue ablation).  Over the last two de-
cades the ultrasound industry has done a remarkable job de-
veloping and refining these devices using a combination of
semi-analytical design procedures and prototype experiments.
However, it is apparent to many that conventional design meth-
ods are approaching practical limits of effectiveness.  The in-
dustry has been slowly recognizing discrete numerical model-
ing on the computer as a complementary solution [3-9].

Today nearly all of the major ultrasound system compa-
nies are experimenting with finite element models using com-
mercial packages like ANSYS® [10] or by writing their own
codes, e.g., Lerch [11,12].  Most have enjoyed only limited
success at significant development and/or simulation costs.  We

suggest that the main source of difficulty is universal reliance
on classical implicit algorithms for frequency-domain and time-
domain analysis—based on related experience with shock and
wave propagation analyses, e.g., [13,14].  In general, implicit
algorithms are best suited to linear static problems, steady state
vibrations, and low frequency dynamics.  A much better choice
for transient phenomena, linear or nonlinear, is an explicit time-
domain algorithm, which exploits the hyperbolic (wave) na-
ture of the governing differential equations, e.g., see [15].

This paper focuses on our recent experience implement-
ing and applying an explicit time-domain algorithm for piezo-
electric transducers under an NSF SBIR grant [16].  We re-
view the algorithmic issues, present validation calculations,
describe 2D and 3D transducer array simulations, briefly ex-
plore some wave propagation issues, summarize, and conclude
with a brief mention of modeling alternatives and future direc-
tions.  The algorithmic approach described here permits prac-
tical solution of transducer problems with thousands to mil-
lions of elements in minutes to a few hours on a workstation
with 64 MBytes or more of random access memory.  Demon-
strated computational advantages over conventional implicit
algorithms are typically factors of 100 or more in speed and
100-1000 in model size, on the same workstation.

ALGORITHM BACKGROUND
The finite element method reduces the electromechanical par-
tial differential equations (PDEs) over the model domain to a
system of ordinary differential equations (ODEs) in time.  This
is done using one of the nearly equivalent integral formalisms—
virtual work, weak form, Galerkin’s method, weighted residu-
als—or less formally, using point-wise enforcement of the con-
servation and balance laws.  The result is that spatial deriva-
tives in the PDEs are reduced to a summation of “elemental”
systems of linear algebraic equations on the unknown field
values at nodes of the finite element discretization.  The con-
tinuum elements used here are 4 node quadrilaterals in 2D and
8-node hexahedrons in 3D.  The unknown field over an ele-
ment is represented by low order shape functions determined
by nodal (corner) values, i.e., bilinear in 2D and trilinear in
3D.  Using a minimum of 15 elements per wavelength limits
wave dispersion errors to less than 1%.  Experience has shown
these choices to offer the most robust basis for large-scale wave
propagation analysis [14] in structural and isotropic or aniso-
tropic continuum models.

The electromechanical finite element equations are derived
from the piezoelectricity constitutive relations and the equations
of mechanical and electrical equilibrium [17].  Applying the for-
malism and “adding” or assembling the local equations for all
elements in the model yield the global system of ODEs
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governing elastic (1), electric (2), and acoustic (3) fields.  Note
that the mechanical equations, (1) and (3), are dynamic while
the electric equation, (2), is quasi-static [17].  Global unknowns
u, φ , and ψ  are, respectively, the elastic displacement
vector, the electric potential vector, and the velocity potential
vector, while F is the applied force vector and Q is the charge
vector.  These vectors are defined by field values at all nodes
in the model.  Coefficients M, C, and K denote the various
uncoupled and coupled “mass,” “damping,” and “stiffness”
matrices, respectively.  To solve these ODEs it is necessary to
make assumptions about the temporal behavior of the electro-
mechanical phenomena.  Frequency-domain solutions assume
time-harmonic behavior, effectively removing time as an in-
dependent variable.  Time-domain solutions assume general
temporal evolution of the system, requiring step-by-step inte-
gration of the equations.  Integration can be done using either
an implicit or an explicit method [18].

For frequency-domain analysis of (1)-(3) the unknowns
become u = ûeiωt , φ = φ̂eiωt , and ψ = ψ̂eiωt , which yields
three inhomogeneous systems of implicit equations for û , φ̂ ,
and ψ̂ .  Direct solution by Gaussian elimination is only prac-
tical in 2D because 3D typically leads to prohibitively large
system bandwidth and memory needs.  The alternative is an
iterative solution.  If the system is symmetric and positive defi-
nite (positive eigenvalues) then the conjugate gradient (CG)
method is appropriate.  In practice, material attenuation and
radiation boundary conditions make the system of equations
complex, non-hermitian, and typically indefinite, requiring a
more general iterative solver, like GMRES [19] or the new,
more robust QMR algorithm [20].

When transient signals are of principal interest, the most
direct solution method is step-by-step integration in time.  There
are many ways to evaluate the current solution from known
results at previous time steps.  Implicit methods couple the
current solution vector, hence, the global system of equations
must be solved at each timestep.  Their advantage is uncondi-
tional stability with respect to time step.  By contrast, explicit
methods decouple the current solution vector and eliminate
the global system solve, but they are only conditionally stable,
i.e., there is a time step limit (CFL condition, [21]) above which
the method is unstable.  The caveat for implicit integration of
wave phenomena is that solution accuracy requires a time step
smaller than one-tenth the period of the highest frequency to
be resolved.  This is close to the CFL stability limit for explicit
methods and effectively removes the principal advantage of
implicit integration.

Explicit integration of (1) and (3) involves diagonalizing
the uncoupled mass and damping matrices, Muu , Mψψ , Cuu ,
Cψψ , using nodal lumping, replacing the time derivatives with
finite differences, and integrating using a central difference
scheme (2nd order accurate).  For stability the time step must
be smaller than the shortest wave transit time across any ele-
ment (CFL condition).  This follows from the hyperbolic (wave)

nature of the original PDEs, i.e., during time step ∆t the field
at a point is only influenced by the field at neighboring points
within a sphere of radius ∆x=cp∆t where cp is the fastest local
wave speed.  Therefore, for ∆t<∆x/cp nodal fields are decoupled
during a single time step and can be integrated independently.

The point is that it is possible to eliminate the manipula-
tion and solution of large systems of electromechanical equa-
tions by integrating (1) and (3) explicitly in time for u  and ψ
using φ  from the previous time step, and then solving (2) im-
plicitly for the new φ  from u  using a preconditioned CG it-
eration (diagonal scaling).  Thus, the algorithm operates on an
element-by-element basis, where elemental contributions are
accumulated in intermediate global vectors, e.g., the nodal force
or charge vectors, and the algorithm processes these vectors
only.  This is equivalent to matrix-vector arithmetic without
actually forming the matrix, which facilitates vectorization and
parallelization.

An important issue in transducer modeling is frequency-
dependent material damping.  Regardless of the solution tech-
nique, fundamental assumptions must be made about the struc-
ture of the uncoupled damping matrices in (1) and (3).  The
two most convenient damping models are mass-proportional
(viscous, ∝1 / ω ) and stiffness-proportional (∝ ω ), e.g.,
Lerch [12].  A linear combination is called Rayleigh damping.
In the frequency-domain, coefficients are simply chosen to give
the required damping at each frequency calculated.  In the time-
domain, constant coefficients yield damping that is inversely
or directly proportional to frequency, or a linear combination.
We also use a material-dependent, three-parameter viscoelas-
tic damping model, e.g., see [22].  Proper choice of viscosity
constants and a relaxation time yields a damping maximum at
the selected frequency and smooth fall-off.  Therefore, vis-
coelastic models may be superposed to yield a discrete spec-
trum of relaxation times that represent specified damping be-
havior over a limited frequency range, but at significant cost in
memory.

The final issue is radiation boundary conditions.  It is
always necessary to truncate the finite element model in space
because of limited computer memory.  This is a fundamental
problem in numerical simulation [23] and requires special
boundary conditions to reduce spurious reflections (grid trun-
cation error).  Time-domain continuum conditions are typi-
cally derived from the one-way wave equation, with an ad hoc
approximation used to fit the discretization.  Higher order
implementations tend to degrade in 3D vector domains due to
this ad hoc discreti-zation.  A new and better approach oper-
ates directly on the finite element equations using the general
relation between spatial and temporal derivatives at an arbi-
trary wavefront.  This yields boundary node velocity in terms
of its derivatives over the element and stresses within the bound-
ary element [24].  The condition performs as well as a 4th
order paraxial absorber [25], with lower computational over-
head and less impact on stability.

VALIDATION CALCULATIONS
The explicit/implicit algorithm was verified against experiments
to check accuracy and robustness of the mixed integration
scheme.  We simulated impedance sweeps on a suite of rectan-
gular piezoelectric bars in air, with width/thickness, i.e., as-
pect ratio, AR=0.195, 0.381, 0.455, 0.597, 0.740, 0.890. 1.99
& 4.97.  Lengths were nominally 21 thicknesses.  Data con-
sisted of amplitude and phase plots (H-P 4194 Network-Im-
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pedance Analyzer) of complex impedance (voltage/current)
from 2.0 to 7.0 or 8.0 MHz.  Recall, minima and maxima oc-
cur at the short circuit resonances and open circuit
antiresonances, respectively.  Two types of impedance calcu-
lations were considered, driven by either time-harmonic or tran-
sient voltage.

Bars were cut from a uniform, thin sheet of poled piezo-
electric ceramic similar to PZT-5H and suspended in air by
wires to plated electrodes on the top and bottom (poling) faces.
Mechanical loading by the air and the thin electrodes was neg-
ligible.  Complete electromechanical properties were not mea-
sured but simply scaled from PZT-5H, based on the measured
VL.  An estimate of mechanical damping was made by match-
ing the antiresonance of the AR=0.195 model to the data near
its minimum.  This gave a damping ratio of 1.89% of critical
( ε = 0.0189).

2D and 3D prism models were discretized into 25 finite
elements through the thickness and a minimum of 15 through
the width, keeping element aspect ratio close to unity.  Bound-
ary conditions on all sides were stress-free since the mechani-
cal impedance of air was insignificant at the frequencies con-
sidered.  Models were driven by time-harmonic (sinωt) or tran-
sient voltage (250 nsec square wave) applied abruptly at t = 0
on nodes corresponding to the electrode locations.  Current
was calculated by summing the time rate of change of charge
at these nodes.   Comparisons of 2D and 3D simulations for
both the AR=0.195 and AR=1.99 samples showed virtually no
difference in calculated impedance, hence, 2D models were
used.  This is not to say that prism response is strictly 2D, only
that (long) bar impedance is insensitive to 3D end effects.

Sinusoidal voltage simulations were run to steady state,
amplitude and phase of current were determined from time
histories, impedance was calculated, and the process was re-
peated at about 200 frequencies to capture details around all
resonances and antiresonances.  This is equivalent to using an
implicit frequency-domain code.  However, a time-domain code
can also yield impedance from a transient calculation by di-
viding Fourier transforms of voltage and current.  The only
requirement is that the applied voltage transient must contain
significant energy over the frequencies of interest.  Differences
between discrete frequency and transient approaches are due,
primarily, to the damping models assumed for each.

Figure 1 shows cross-plots of the measured and calcu-
lated impedance amplitude (upper) and phase (lower) for the
AR=0.89 case.  There is generally good agreement except that
the calculated higher mode frequencies are shifted upward by
0.1-0.2 MHz.  Both discrete frequency and transient/FFT im-
pedance calculations are shown.  Damping is constant (ε =
0.0189) at each frequency for the discrete case, while mass-
proportional damping matches this value at 2.5 MHz and var-
ies as inverse frequency for the transient/FFT calculation.  The
latter approach is preferred for these experiments because it is
faster by a factor of 300 or so and lower damping at higher
frequencies appears to fit the data better.  Similar agreement
was found between simulated and experimental data for all
aspect ratios less than unity,  (see Fig. 2 for AR=0.195, 0.381.)

Significant discrepancies were found for the higher as-
pect ratio bars, Figure 3, although qualitative agreement was
still good.  Higher aspect ratio bar vibrational modes are more
complicated and dependent on the full constitutive matrices,
i.e., more sensitive to errors in electromechanical properties.
Prompted by the crude estimates used here, simple parameter

Figure 1.  Electrical impedance amplitude and phase for the
AR=0.89 (width/thickness) bar, showing comparison of mea-
sured and calculated impedance using discrete frequency and
transient/FFT methods.
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Figure 2.  Electrical impedance amplitude for the AR=0.195
and 0.381 bars.  Comparison of measured data and calculated
impedance at discrete frequencies assuming a constant damp-
ing ratio of 1.89%.



variations showed that the stiffness coefficients were the most
likely source of disagreement, e.g., increasing c13 by 4%
aligned the lowest frequency extremals.  Note that similarities
in shape of impedance plots for the lowest and highest aspect
ratios, ARs=0.195 (Fig. 2), 4.97 (Fig. 3) follow because both
approach 1D behavior.

ARRAY SIMULATIONS
Useful models must accommodate the relatively complicated
array structure of modern transducers.  This includes stacks of
piezoceramic, electrodes, adhesive, backing, matching layers,
and lens material with filled or unfilled kerfs separating ele-
ment stacks.  The individual, albeit electromechanically
coupled, transducer stacks are predominately 2D for kerfs in
one direction or 3D for kerfs in two directions.  Today, array
design procedures typically rely on hybrid 1D models of indi-
vidual elements [26, 27] and “mixture” models of composites
[28].  However, there are important subtleties regarding acoustic
coupling efficiency, cross-coupling between elements, radia-
tion patterns, elemental mode shapes, etc., requiring both 2D
and 3D numerical simulations.

To examine array applications we first considered a 2D
finite element model of a hypothetical 1D transducer array.
The stack consisted of backing material, a 0.3 mm PZT-5H
layer, and a 0.125 mm matching layer.  The array was defined
by 0.05 mm wide, air-filled kerfs into the backing giving 0.1
mm wide piezoceramic bars on a 0.05 mm backing pedestal.
Lens material (VL=1.0 mm/µsec, ρ = 1.5 gm/cm3) extended
from the top of the stack.  Two backing materials were consid-
ered, both with longitudinal impedance of 7.5 kg/sec/m2 but
one had twice the longitudinal wave speed (VL=3.0 mm/µsec)

and half the density (ρ = 2.5 gm/cm3) of the other.
The finite element model was made up of square 5.0x5.0

micrometer elements.  The left boundary was a line of sym-
metry; the bottom, right, and top boundaries were absorbing
(radiation conditions).  The symmetry line bisected the center
(driven) bar with 8 bars to its right—equivalent to a full model
with 17 bars.  The half-model was discretized into 260x370 =
96,200 2D square elements.  Driving voltage was a 100 nsec
smooth (C1) pulse applied to electrodes (nodes) on the top and
bottom faces of the center bar.  Snapshots of the pressure over
half of each model at 0.787 µsec are shown in Figure 4, with
the faster backing case on the left.  These are frames from an
on-screen movie of transducer response that graphically illus-
trates the wave system and mechanical coupling across and
between piezoelectric elements.  Figure 5 displays plots of pres-
sure time-histories and Fourier amplitude spectra for the fast
and slow backing material, at a point in the lens 0.1 mm above
the driven element on the centerline.  The model required 76
cpu minutes (IBM RS/6000, Model 350) per µsec of simula-
tion time.

A 3D example of the same stack model but with orthogo-
nal kerfs defining 0.1x0.1x0.3 mm piezoceramic posts was also
calculated.  There were two planes of symmetry in this case
and the model included two neighboring piezoceramic elements
in each direction.  The quarter-model consisted of 172x48x48
= 396,288 3D box elements measuring 7.0 to 8.3 micrometers
on a side.  The model and deformed shape (x60,000) of the
stack and backing are drawn in Figure 6.  This deformation
pattern was for a sinusoidal driving voltage at 4.3 MHz.  The
3D model took 7.2 cpu hours per µsec of simulation time (IBM
RS/6000, Model 350).

WAVE PROPAGATION ISSUES
The previous examples emphasized transducer modeling.  The
explicit algorithm is well suited to wave propagation analysis in
large-scale models with or without transduction elements.  How-
ever, it should be emphasized that model size is constrained by
available memory—severely so in 3D.  Ten to fifteen elements
per wave length are required to limit numerical wave dispersion
caused by spatial discretization.  Thus, in 2D (where the algo-
rithm stores ≥5 words or ≥20 bytes per node) about 100x100

Frequency (MHz)

2

4
6
8

2
4
6
8

2

4
6
8

104

103

102

101

A
m

pl
it

ud
e 

(o
hm

)
A

m
pl

it
ud

e 
(o

hm
)

2.0 4.0 6.03.0 5.0 7.0

AR = 1.99 

Data
Transient/FFT
Transient/FFT (1.04*c13)

2
4
6
8

2.0 4.0 6.03.0 5.0 7.0

AR = 4.97 

103

102

101

100

2

4
6
8

2

4
6
8

Discrete Frequency
Data

Figure 3.  Electrical impedance amplitude for the AR=1.99
and 4.97 bars.  Sensitivity to stiffness errors is indicated by
perturbing the c13 coefficient +4% in the AR=1.99 model,
which aligns the low frequency extrema.

Figure 4.  Snapshot of pressure over the symmetric 1D array at
0.787 µsec for two backing materials.  Fast backing is on the
left half and slow backing is on the right half.  The center ele-
ment is driven with a smooth 100 nsec pulse.
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wave lengths can be modeled on a 64 Mbyte workstation.  In
sharp contrast, for 3D (where ≥7 words/node are stored) only
about 10x10x10 wave lengths are feasible on the same machine.

There are two consequences of limited model size.  First,
very efficient radiation conditions are essential on the bound-
ary of all all truncated materials (solids and fluids); otherwise
the simulation does not correspond to the problem.  Second,
3D wave studies must rely on wave field extrapolation for
propagation across any significant span of homogeneous space
surrounding the local 3D inhomogeneous model.  Although
large-scale 2D model studies are practical, extrapolation is still
preferred across homogeneous space, for economy and to limit
absolute phase errors.  The mathematical basis for wave field
extrapolation is Kirchhoff’s integral representation for solu-
tions of the inhomogeneous scalar wave equation, e.g., [29].

To illustrate wave propagation modeling we consider two
applications in ultrasound therapy.  The first concerns the inter-
action of ultrasound with bone in hyperthermia treatment.  Fig-
ure 7 shows steady-state peak pressure calculated over a femur
model insonified by a 500 kHz wave train (from above).  There
is strong coupling into the bone and focusing is apparent in the
marrow.  The second example concerns effects of wave
nonlinearities at the beam focus in ultrasound tissue ablation.
Figure 8 shows a 4 MHz beam from a cylindrical transducer (25
mm aperture, 30 mm focal length) focusing in a nonlinear fluid
that exhibits “persistent” cavitation.  Nonlinear density and stiff-
ness changes are found to alter the post-focus pressure distribu-
tion significantly.  Note, wave field extrapolation from the ultra-
sound source can be used to substantially reduce model size
around these inhomogeneous or nonlinear regions.

SUMMARY AND CONCLUSIONS
In this paper we examined an explicit time-domain, finite ele-
ment solution algorithm for the electromechanical equations
describing piezoelectric transducers.  We demonstrated an
implementation of the algorithm for a variety of transducer
and wave propagation problems and emphasized the substan-
tial transient performance and 3D size advantages over more
conventional implicit finite element algorithms (>100 for “com-
plete” models).  There are important aspects of the modeling

Figure 5.  Plots of pressure time-histories and Fourier amplitude
spectra for the fast backing and slow backing 1D array simula-
tions.  Output at a point 0.1 mm above the driven element.

Figure 6.  Finite element model of a 2D piezoelectric array with
two planes of symmetry.  The quarter model is shown on the left.
An expanded view of the deformed shape (x60,000) for a 4.3
MHz driving voltage is shown on the right (lens removed).

Figure 7.  Steady-state pressure amplitude over a femur model
insonified by a 500 kHz wave train from above.  Dark is high
pressure, light is low.  Shows focusing in marrow and diffrac-
tions from step-wise approximation of bone interface.



problem that have not been touched on in this paper, e.g., tran-
sient driver circuit modeling, structural models (shells, beams,
membranes) for subgrid features like adhesive, electrodes, etc.,
shock modeling in water, and last but not least, the reception
problem.  All of these will be addressed in the course of our
NSF-sponsored research.  Finite element eigen-analysis, e.g.,
[30], also deserves attention, specifically, the feasibility of ex-
tracting eigen-data from time-domain solutions.

Explicit time-domain wave solvers are by no means new,
e.g., [31].  They have been widely used for shock problems in
continua (finite difference) and structures (finite element) for
well over 30 years, but almost exclusively in weapons-related
applications.  Nonetheless, their application to piezoelectric
transducers has required significant modification of the con-
ventional explicit approach.  Issues include the appropriate
mixing of explicit mechanical and implicit electrical solvers
and proper coupling of the explicit velocity potential (acous-
tic) and displacement (elastic) elements.  It should be noted
that the mixed algorithm described here can be extended to
coupled mechanical wave propagation, heat generation, and heat
diffusion (bioheat) problems.  This capability would be useful
in transducer design, hyperthermia and tissue ablation models,
and FDA regulatory reporting [32].

In conclusion, the explicit transducer modeling algorithm
described here was demonstrated to be both effective and prac-
tical for wave propagation analysis in electromechanical struc-
tures and continua.  It has always been available to analysts but
was overshadowed by implicit approaches for historical and
technical reasons.  This should no longer be the case given the
speed and model size advantages of explicit integration.  With
current workstations (and future PCs), this algorithm permits
desktop design simulations that required a supercomputer four
years ago.  Nonetheless, do better algorithms exist?  In prin-

ciple the answer is yes.  The Fourier (pseudospectral) method
or high order finite elements achieve good propagation accu-
racy with ≤5 nodes per wave length versus ≈15 for the low
order element.  However, in practice these schemes exhibit
poor model resolution since fewer nodes are available to de-
fine interfaces.  Future research might consider a combination
of low order and high order elements where needed.  All simu-
lation results in this paper were calculated using the PZFlex
finite element code [33].
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