
Breakthrough:

New Solutions to the problem of:

Instantaneous  “Resonant Load”
Parameters Estimation Operating 
in  “Non-Stationary” Conditions
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Real World  Real Operating Conditions

Two broad categories:

• Stationarity, Deterministic, Periodic....  

• Non-Stationarity, Time-Evolving (T-E), 
Transient.......
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Extensive field tests conducted by known 
professionals active in the field of ultrasound 

conclude that: 

many of new ultrasonic applications are
highly non-stationary!

There is a need for “Easily Implementable
Signal Processing Tools” capable to 

accurately estimate “Load Parameters”
in “Real-Time”
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The proposed solution is based on:

Trigonometric properties 
of band-limited signals 

represented in their
analytical forms
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It can be shown that “Short-Time” Estimations 
are easily obtainable for the following ″Time-

Evolving Parameters″:

Magnitude of “Short-Time” Load 
Impedance

Argument of “Short-Time” Load 
Impedance
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“Short-Time” Active/Reactive Power 
of ″Short-Time” Load Impedance″

Instantaneous Frequency of 
“Time-Evolving”

Load Voltage or Load Current″
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i(t) =  Î(t)  cos(2⋅π⋅fo(t)⋅t + φi(t))

u(t) = Û(t) cos(2⋅π⋅fo(t)⋅t + φu(t))

Î(t) : Instantaneous current envelope

φi(t): Instantaneous current phase

Û(t) : Instantaneous voltage
envelope

φu(t): Instantaneous voltage phase

fo(t): Instantaneous driving signal 
frequency

Time 
Evolving
″Resonant

Load″

i(t)

u(t)

Basic structure bloc diagram

Basic theoretical analysis
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Then, i(t) and u(t) can be represented in their respective 
analytical forms:

i(t)  ianalytic(t) =  i(t) +  j ⋅ i(t)

u(t) uanalytic(t) = u(t) +  j ⋅ u(t)

With:

i(t) =   Î(t) ⋅ sin(2⋅π⋅fo(t)⋅t + φi(t))

u(t) = Û(t) ⋅ sin(2⋅π⋅fo(t)⋅t + φu(t))

~

~

~

~
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u(t) Hilbert Transformation u(t)

i(t) Hilbert Transformation i(t)

~

~

H{x(t)} properties:   Mod[H] = 1 , Arg[H] = - π/2

The Hilbert Transformer is a 90 degrees phase-shifter!

H {x(t)} = x HT t( ) ; x HT t( ) 1
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Instantaneous current
envelope

Instantaneous current
frequency
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From trigonometric properties, the following relationships
can be derived:
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Short - Time 
Magnitude of the 
Load Impedance

Short - Time 
Argument Sinus 

of the Load
Impedance

~       ~
sin φ u t( ) φ i t( ) i t( ) u t( ). i t( ) u t( ).

i t( )2 i t( )2 u t( )2 u t( )2.~                     ~

M stZ t( )
u t( )2 u t( )2+

i t( )2 i t( )2+

~

~
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Let us define the     "Short-Time" Active Power 
as follows: 

~       ~

Pactive t( ) 1
2

Û t( ). Î t( ). cos φdyn t( ).

Pactive t( ) i t( ) u t( ). i t( ) u t( ).

2

Then:
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Computer Simulation Example

MstZ(t)

sin[φstZ(t)]

i(t)

u(t)
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Field Test Measurements (from MMM ultrasonic system) 

u(t)

i(t)
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PstZ(t)

Computed "Short-Time" Magnitude, Argument, Active Power of the Load

Western Switzerland University of Applied Sciences



Conclusion

Many Processes with fast changing 
load conditions can greatly benefit 

from ″real-time″
load parameters estimations

This can also dramatically enhance 
the global performances of some 

industrial processes.
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