

MPI Solution for **YOU!**

January 2020

MP Interconsulting
Marais 36,
2400 Le Locle, Switzerland

www.UltrasonicsWorldGroup.com

Phone: +41-32-9314045
Fax: +41-32-9314079
www.mpi-ultrasonics.com
mpi@mpi-ultrasonics.com

Ultrasonic Extraction...

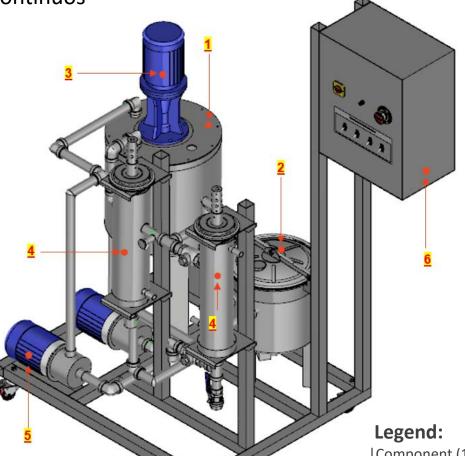
1. The history of extraction:

- Vegetal materials are invaluable resources, useful in daily life as food, food activities,
 flavors, fragrances, pharmaceuticals, colors or directly in medicine.
- A herbal extract could be defined as the compounds and/or compound mixtures
 obtained from fresh or dried plants, or parts of plants: leaves, flowers, seeds, roots and
 barks.
- Medicinal and aromatic plants provide an inexhaustible resource of raw materials for the pharmaceutical, cosmetics and food industries and more recently in agriculture for pest control.

2. Ultrasound assisted extraction (UAE)

Advantages:

- Inexpensive, simple and efficient alternative to conventional extraction.
- Increase of extraction yield and faster kinetics
- Ability to reduce the temperature allowing extraction of thermo sensitive compounds


Entries on herbal drugs in pharmacopoeias

Country	Number of herbal drugs monographs			
French pharmacopoeia	190			
Switzerland pharmacopoeia	180			
USSR pharmacopoeia	140			
Polish pharmacopoeia	125			
British codex	125			
Belgian pharmacopoeia	120			
Holland pharmacopoeia	120			
Hungarian pharmacopoeia	110			
Romanian pharmacopoeia	105			
Italian pharmacopoeia	105			
German pharmacopoeia	85			
British pharmacopoeia	80			
Scandinavian pharmacopoeia	80			
International pharmacopoeia	45			

Extraction Capacity 50 L – Continuos

|Component (1)| --- Capacity --> 50 liters

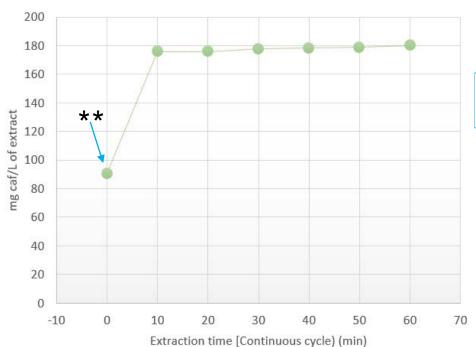
|Component (2)| --- Capacity --> 25 liters

|Component (3)| --- Mechanical Agitator

|Component (4)| --- Chamber for Ultrasound Systems

|Component (5)| --- Pumps

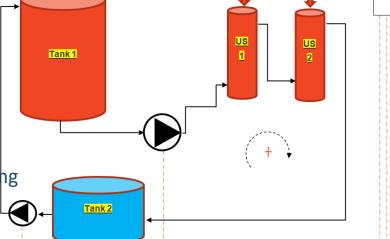
|Component (4)| --- Device Control


Test 1

Mpi ultosonics

Product:

Extract caffeine from coffee beans [silver skin] at low temperatur

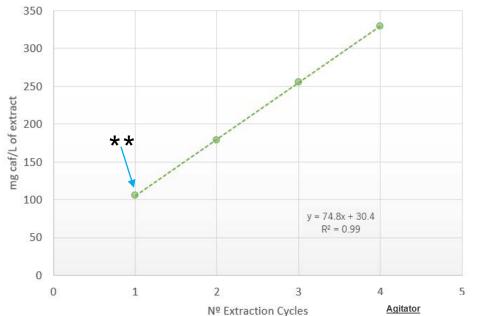

Study: Evolution of ultrasonic caffeine extraction vs. time.

Total Cycle time = 60 minutes

Mixture = > 50 L of water + 1.0 kg of Silver Skin

Samples were collected at each 10 minutes

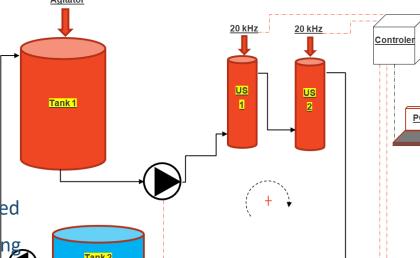
** mg of caffeine per liter of extract after mechanical mixing


Test 2

Product:

Extract caffeine from coffee beans [silver skin] at low temperati

Study:


Evaluation of maximal saturation of caffeine in the medium.

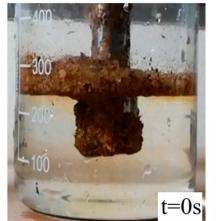
Cycle time = 10 minutes

Time between cycles= 10 minutes

Mixture = > 50 L of water + 2.5 kg of Silver Skin

** mg of caffeine per liter of extract after mechanical mixing.

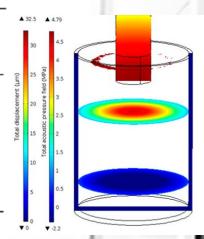
Comparative Study


US vs Solvent extraction

Product:

Extract caffeine from coffee beans [silver skin] at low temperature

In this work, we intended to optimize the recovery of caffeine from this by-product, by comparing two different processes of extraction, namely, a classic solid-liquid method, and the physical processing based in MPI ultrasound-assisted technology.


Comparison of the extracts composition using different conditions of extraction.

Extract	Sample		MMM technology parameters		5-Caffeoylquinic acid		Total phenolics				Ferric Reducing Antioxidant Power		
	Ground	Entire	Frequency (kHz)	Input electric power (W)	Time (s)	μg/ mL of extract	mg/g of CC	μg GAE/ mL of extract	mg GAE/g of CC	μg CAE/ mL of extract	mg CAE/g of CC	μg FSE/ mL of extract	mg FSE/g of CC
1	×		19.8	250	60	13.0 ± 2.2 ^b	0.64 ± 0.11^{b}	110.3 ± 15.7 ^g	5.5 ± 0.7 ^g	239.7 ± 29.2 ^e	12.0 ± 1.5 ^e	1349 ± 116 ^e	65.7 ± 5.8 ^e
2	×		19.8	250	180	18.2 ± 0.6^{a}	0.91 ± 0.03^{a}	148.7 ± 6.9^{ef}	7.4 ± 0.3^{ef}	311.5 ± 12.9^{d}	15.6 ± 0.6^{d}	1771 ± 21^{cd}	88.5 ± 1.0^{cd}
3	×		19.8	250	300	17.4 ± 1.6^{a}	0.87 ± 0.08^{a}	171.4 ± 7.1^{cd}	8.6 ± 0.4^{cd}	353.7 ± 13.3^{bc}	17.7 ± 0.7^{bc}	1862 ± 111^{bc}	93.1 ± 5.6^{bc}
4	×		19.8	500	60	17.2 ± 1.0^{a}	0.86 ± 0.05^{a}	137.1 ± 4.0^{f}	6.9 ± 0.2^{f}	289.7 ± 7.5^{d}	14.5 ± 0.4^{d}	1639 ± 43^{d}	81.9 ± 2.2^{d}
5	×		19.8	500	180	17.7 ± 0.6^{a}	0.88 ± 0.03^{a}	158.6 ± 4.2^{de}	7.9 ± 0.2^{de}	329.8 ± 7.9^{cd}	16.5 ± 0.4^{cd}	1853 ± 59^{bc}	92.7 ± 3.0^{bc}
6	×		19.8	500	300	17.6 ± 1.0^{a}	0.88 ± 0.05^{a}	174.1 ± 8.2^{cd}	$8.7 \pm 0.4 b^{cd}$	358.6 ± 15.2^{bc}	17.9 ± 0.8^{bc}	1909 ± 35^{bc}	95.5 ± 1.7^{bc}
7		×	19.8	500	300	17.2 ± 1.9^{a}	0.86 ± 0.09^{a}	179.6 ± 1.7^{bc}	$9.0 \pm 0.1 b^{bc}$	369.0 ± 3.1^{abc}	18.4 ± 0.2^{abc}	2014 ± 45^{b}	100.7 ± 1.1^{b}
8		×	19.8	500	420	17.2 ± 1.4^{a}	0.86 ± 0.07^{a}	180.8 ± 4.8^{abc}	$9.0 \pm 0.2 \text{ ab}^{abc}$	371.3 ± 9.0^{ab}	18.5 ± 0.5^{ab}	1992 ± 46^{b}	99.6 ± 1.8^{b}
9		×	19.8	500	600	18.9 ± 0.7^{a}	0.94 ± 0.03^{a}	203.8 ± 2.0^{a}	$10.2 \pm 0.1 a^{a}$	410.6 ± 3.0^{a}	20.5 ± 0.2^{a}	2446 ± 7^{a}	122.3 ± 0.4^{a}
10	×		Classic solid-liquid extraction*			19.1 ± 0.2^{a}	0.96 ± 0.01^{a}	198.3 ± 2.6^{ab}	$9.9\pm0.1~\mathrm{ab^{ab}}$	403.9 ± 4.8^a	20.2 ± 0.2^{a}	2266 ± 22^a	113.3 ± 1.1^{a}

Each condition was tested in triplicate and each extract was analysed in triplicate (n = 9). Different letters within each column represent significant differences at p < 0.05.

*Extraction conditions: hidroalcoholic solvent (1:1), constant magnetic stirring (600 rpm), 60 min at 40 °C. CC, coffee chaff; GAE, gallic acid equivalents; CAE, chlorogenic acid equivalents; FSE, ferrous sulfate equivalents.

H. Puga et al. / Journal of Cleaner Production 168 (2017) 14-21

Main Conclusion:

In only 10 min, the sonication probe allowed a higher recovery of caffeine, without any need of sample preparation and using only water as extraction solvent!

MP Interconsulting
Marais 36,
2400 Le Locle, Switzerland
www.UltrasonicsWorldGroup.com

Phone: +41-32-9314045
Fax: +41-32-9314079
www.mpi-ultrasonics.com
mpi@mpi-ultrasonics.com

