The Ultrasonic Weld Mechanism State of the technology

Edgar de Vries Karl Graff

- Objectives
- Introduction
- Considered weld mechanisms
- Current model for joint formation
- Common practices and main issues today
- Recent research results
- Summary

- Collect and summarize the available literature on Ultrasonic Metal Welding (USMW).
- Review key developments over 50+ years.
- Identify the most recent theories on the mechanism of USMW.
- Identify areas where further research is needed.

Introduction

- Welding Engineering Program
 - USMW was discovered 1949 (by accident)
 - Extensive '50's-'60's research in the US
 - Research started in USSR and East Germany in '50's
 - In Japan work started in early '70's
 - Current research continues in Germany, Japan and the US

Basic USMW Systems

UIA 2002, New York, NY

USMW and Related Processes

Welding Parameter Interaction

Welding Engineering Program

UIA 2002, New York, NY

Bonding Mechanisms

- Fusion-Melting has been considered possible at the interface. Interface microstructure has been associated with melting and rapid solidification. But USMW now considered a solid state process.
- Recrystallization- Observed in ultrasonically welded joints but a gross reorientation of grains or the microstructure is generally not possible.

Bonding Mechanisms (cont'd)

- Diffusion- Has been observed, especially along gain boundaries, but generally bulk diffusion does not take place.
- Plastic deformation with metallic adhesion-Observed in all USMW interfaces. The material mixing and subsequent metallic adhesion is considered the most important bonding mechanism. All other processes are possible, but are not necessary.

Evolution of the Weld

- Normal load presses the surface asperities into contact
- Slip deforms the asperities and adjusts the surfaces
- Sublayer deformation causes Oxides to dissipate and intense material mixing

Typical USMW Joint Interface

Sequence of Joint Formation

- 1st Stage: Metals are forced into close contact, asperities deform, contaminations start to dissipate.
- 2nd Stage: Metallic adhesion bonds and active centers form, (topo-)chemical reactions start
- 3rd Stage: Interface grain structure destroyed, residual stresses and active centers relax, atoms change their functional locationsleading to microscopic recrystallization and diffusion.

Model (cont'd)

- The three stages take place simultaneously or within a very short time difference.
- The last stage is responsible for the formation of a strong joint, because exchange effects occur between the metallic substances. This stage relies on elevated temperatures.
- If metals are welded that have no solubility, the joint strength relies only on inter atomic interaction.

Weldability Guidelines

Weldability class/weldab ility	Lattice structure	Metals	Hardness/ HV
1/very good	cfs	Al,Au,Ag, Cu,Ni,Pd,Pt	3001000
2/good	cfc cbc	Th α- Fe,Nb,Ta,V	10002000 3001000
3/feasible	cfc cbc hex	Mn Mo,Zr Mg,Ti,Zn, Sb	20003000 10002000 3001000
4/unlikely, not possible	cfc cbc hex	Ir,Rh,(Pb) Cr,W Be,Cd,Co, Si	>3000 >2000 >1000

- Based on the model of weldability, classes can be formed based on deformability.
- Only classes 1 and 2 are suitable for USMW, metals in class 3 have low fracture loads.
- If different materials are to be welded the difference in hardness should not exceed 1000 HV.

Common Practices and Issues

- Lateral Drive system with rigid anvil, amplitude controlled sonotrode and energy controlled weld process – widely used.
- If aluminum sheet metal is welded, good weld strength often is accompanied by "tip sticking."
- Welding parameters change as surface conditions change. However control systems do not account for changing conditions-leading to a variable process.

Recent Experiments-Background

- USMW process still not fully understood.
- The Wedge Reed design has provided strong joint strength with low sonotrode sticking.
- Correlate the sequence of events (initial, welding, extrusion stage) to vibration conditions.
- If surface conditions are not well controlled, weld process is also unreliable.

Experimental Setup

Welding Engineering Program

UIA 2002, New York, NY

UIA 2002, New York, NY

- Research on USMW has been conducted for 50+ years.
- USMW is commonly used for electrical connections, tube and package sealing and wire bonding.
- Models for basic parameter interactions and weld mechanism have been developed.
- For aluminum sheet metal welding, large scale applications remain a challenge.