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Universal Formula for Electric Impedance 
  of Piezoelectric Ceramic pZ  

 

 I have derived an Universal Formula for Simulation of Electric Impedance Model ][/ Ω= IVZ p  of 
piezoelectric ceramic. Formula stands for all shapes of piezoelectric bodies: circular plate, circular-ring plate, rectangular plate, 
cylinder, circular-ring cylinder, circular-ring sectional cylinder, sphere, etc.  Piezoceramic bodies may have n-th number of 
surfaces loaded by equal or different external loads: D

jF  or E
jF  ( D

jv  or E
jv  - motion velocities of contour surfaces loaded by 

D
jF  or E

jF ) as interaction with outer medium, i.e., external mechanical impedances: D
jZ  or .E

jZ  
 Formula enables precise determination of resonant frequencies of numerous radial, transversal, longitudinal, and lateral 
modes of oscillation even at design stage of piezoelectric transducers, and before manufacturing of piezoceramic elements and 
experimental measuring. Application field of piezo-sensors and actuators is very wide, and of special interest for military 
industry and space research. It may be also used for significant improvement of existing methods of modeling FEM, BEM, etc. 
   The formula is based on two constitutive system of equations: 
 

Isothermal func. of internal energy :),( iij DSU  
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Isothermal func. of electric potential :),( iij ESH  

,31131211 zzz
EE

rr
EE

rr EeScScScT −++= θθ  

,31131112 zzz
EE

rr
EE EeScScScT −++= θθθθ  

( ) ,333313 zzz
E

rr
EE

zz EeScSScT −++= θθ  

( ) .333331 z
S

zzrr
E
z ESeSSeD εθθ +++=  

 

Formula of electric impedance ,pZ  for piezoelectric body with n surfaces is a function of 
numerous parameters. 
 Sum of all forms of energy in a conservative system is constant (First Law of Thermodynamics, 
or  Law of Conservation of Energy):   
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D
ijz , D

njz , D
nnz , E

ijz , E
njz  and E

nnz - internal mechanical and electric impedances, transfer functions of system (black box). 
Comparison of derived formula by computer simulation using software package MATLAB, with analogous 
characteristic obtained by experimental measuring on Automatic Network Analyzer HP4194A, shows results at 
least 50% better than all known results published until now in scientific literature available to me. 

 Formula is applicable on: 1D, 2D, and 3D oscillating models of piezoelectric ceramic bodies, whose number of surfaces 
][ 2mSn  may extend to infinity ).( →∝n  Also, it can join different assumed oscillation models (any combination of: 1D, 2D, 

and 3D model) of the same piezoceramic specimen loaded under equal conditions in the same period of time. 
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1 – Case:  2=n  - 1D model (transversal oscillation of the: circular plate, circular-ring plate, 
rectangular plate etc; or longitudinal oscillation of a: free beam, cantilever, cylinder, circular-ring 
cylinder, circular-ring sectional cylinder, etc.):  

,1111 VIvFIVvF EEEDDD +=+  

.
)(
)(

22121112111

22121112111
EEEEEEE

DDDDDDD

p zvzvzvz
zvzvzvz

I
VZ

+++
+++

==  

2 – Case:  3=n  - 2D model (radial oscillation of the: circular plate, circular-ring plate, rectangular 
plate, free beam, cantilever, cylinder, circular-ring cylinder, circular-ring sectional cylinder, etc.): 

,22112211 VIvFvFIVvFvF EEEEEDDDDD ++=++  

.
)()(
)()(

33232131223222121113212111

33232131223222121113212111
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DDDDDDDDDDDDDDDDD
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I
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++++++++
++++++++

==

 

3 – Case: 4=n  - 3D model (3D oscillation of the: circular plate, circular-ring plate, rectangular plate, 
free beam, cantilever, cylinder, circular-ring cylinder, circular-ring sectional cylinder, etc.): 
 

,332211332211 VIvFvFvFIVvFvFvF EEEEEEEDDDDDDD +++=+++  

.
)()()(
)()()(

44343242141334333232131224323222121114313212111

44343242141334333232131224323222121114313212111
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

p zvzvzvzvzvzvzvzvzvzvzvzvzvzvzvz
zvzvzvzvzvzvzvzvzvzvzvzvzvzvzvz

I
VZ

+++++++++++++++
+++++++++++++++

==

For PZT8 circular plate with dimensions: ][502 2 mma = , ][32 mmh = , ][7600
3m

kg
=ρ , whose coefficients are: 

],/[107,13 210
11 mNc E ⋅=  ,1097,6 10

12 ⋅=Ec  ,1016,7 10
13 ⋅=Ec  ,104,12 10

33 ⋅=Ec  ],/[108,7 8
31 mVh ⋅−=  ],/[109,26 8

33 mVh ⋅=  
],m/N[cD 210

11 1014 ⋅=  ,1028,7 10
12 ⋅=Dc  ,1008,6 10

13 ⋅=Dc  ,101,16 10
33 ⋅=Dc  ],/[4 2

31 mCe −= ,8,1333 =e ,582/ 033 =εε S    
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 8 

 Formula provides following simulated characteristic of electric impedance model, which is 
compared with analogous, obtained by measuring on Automatic Network Analyzer HP4194A: 
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Circular plate:   PZT 8,   2a=50,   2h=3,    h/a=0,06 

                       R1 

 

                                                                       Experiment 

 

                                   R2                                                                                               T1 

                                                                                              Model 

 

                                              R3 

 

                                                       R4      

 

  

Knowing values of resonant frequencies is an initial condition during design of piezoceramic elements. 
From the picture above one may see that by this formula one may determine several exact positions of 
radial resonant modes R1, R2, R3 and R4, and transversal mode T1, which are the most frequently used 
in technical practice and application. 
4 – Case: 5=n  - 3D model (rectangular plate, free beam, etc.): 
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5 – Case: 6=n  - 3D model (rectangular plate with a circular or rectangular hole, etc.): 
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…, etc. 

f 

Zp 
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8 . 5 . 4 .  S e c o n d  A p p r o a c h  t o  3 D  P r o b l e m  o f   
         O s c i l l a t i o n s  o f  C i r c u l a r - r i n g  P l a t e  

 In this part of the paper are considered 3D spatial oscillations of circular-ring plate with 
electrode coatings and transversal polarization along axis z Figure 8.121 – a. 3D model by which can 
be described spatial oscillation of piezoceramic circular-ring plate, may be presented using the black 
box analogy, Figure 8.121 – b. 

3D model

Black Box
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v
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1a

2a

r

z

 
a)                                                              b) 

Figure 8.121. – 3D model of circular-ring plate 
 
 It may be seen that circular-ring plate may be observed as black box device with five 
variable parameters (five input-output values). First group of values (usually used as input – 
leading of electric energy on plate coatings from electric generator of alternate voltage) is 
electric voltage 0U  and electric current strength I. Remained four groups of values conform to 
cylindric surfaces - 1ar =  (surface force 1F  and velocity ),1v  2ar =  (surface force 2F  and 
velocity ),2v  and plane mutually opposite surfaces hz −=  (surface force 3F  and velocity ),3v  and 

hz =  (surface force F4  and velocity v4).  
 Oscillations of circular-ring plate are excited by leading of alternate difference of electric 
potential tieU ω

02  on surfaces .hz ±=  Plate oscillations, i.e., vibration of particles, have radial-

transversal character of motion, that is ktzwrtrus
rrr ),(),( 0 += . 

 Equations of piezoelectric effect, which are used in this analysis and procedure of derivation is 
identical with procedure in item 8.5.2♣, expressions (8.271)÷ (8.275). 
 Partial differential equations of oscillation of circular-ring plate: 
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♣ 8.5.1. 3D model of oscillations of circular plate 
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Figure 8.122. – Componential displacement ),( rfuu )) =  Figure 8.123. – Componential displacement ),( Iruu )) =  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8.124. – Componential displacement ),( Ifuu )) =  Fig. 8.125. – Component. Displacement )/,( 21 aafuu )) =  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8.126. – Componential displacement )2,( hfuu )) =  Figure 8.127. – Componential displacement )2,( hIuu )) =  
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Figure 8.128. – Componential displacement )2,( hruu )) =  Fig. 8.129. – Component.  Displacement )/,( 21 aaIuu )) =

 
 
 
 
 
 
 
 
 
 
 

 

Figure 8.130. – Componential displacement ),( zfww )) =  Figure 8.131. – Componential displacement ),( Ifww )) =  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8.132. – Componential displacement ),( Ifww )) =  Fig. 8.133. – Component.  Displacement )/,( 21 aafww )) =  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8.134. – Componential displacement ),( Izww )) =  Fig. 8.135. – Component.  Displacement )/,( 21 aazww )) =
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Fif. 8.136. – Component. Displacement )a/a,z(ww 21
)) =  Fif. 8.137. – Component. Displacement )a/a,I(ww 21

)) =  
 
 
 
 
 
 
 
 
 
 
 
 

 

Fif. 8.274. – Electric field )Z/Z,f(EE zz 21
))

=  Fif. 8.275. – Electric field )Z/Z,f(EE zz 43
))

=  
 
 
 In order to show the possibility of analysis of piezoceramic circular-ring elements of 
concrete dimensions, a numerical analysis of the proposed model )( fZZ ulul =  is performed, 
using software package MATLAB. Concretely, an input electric impedance is determined for 
PZT8 piezoceramic circular-ring plate (Figure 8.276, programme 200 – Appendix III), whose 
tensors of material coefficients are given in Appendix II, with dimensions ],[382 2 mma =  

],[152 1 mma =  and .][52 mmh =  It is assumed that all contour surfaces of circular-ring plate 
oscillate freely in air without additional external loading. 

Comparison of obtained input electric impedance from Figure 8.276. is performed with 
analogous characteristic obtained by standard Mason’s transversal (crossing) one-dimensional 
model [306] (Figure 8.277). One may notice that for the first transversal mode (T1) exists 
satisfactory coincidence of both models. Small deviations that exist are result of coupled effect of 
action between transversal and radial mode of oscillation at adopted 3D model. Further, one may 
notice that one-dimensional Mason’s model does not encompass radial resonant modes (R1, R2, R3, 
R4), which presents the proposed 3D model.  

 On Figure 8.278. is presented comparative characteristic of input electric impedance of 
adopted 3D model with characteristic of radial two-dimensional model [222]. One may notice that for 
the first two radial resonant modes of oscillation (R1, R2), exists good agreement, while for the rest 
radial resonant modes is characteristic deviation due to the great effect of transversal resonant mode 
at proposed 3D model. From Figure 8.278. one may notice that two-dimensional radial model cannot 
present transversal mode of oscillation (T1). 
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On Figure 8.279. is presented comparison of electric impedance characteristics of adopted 
3D model with 3D model proposed by Brissaud [53, 54]. One may notice that Brissaud’s model 
contains certain limits and faults. Good coincidence is only at the first radial resonant mode (R1), 
while at remained radial resonant modes deviations are significant. Also is illogical phenomenon 
at radial mode R4 (Brissaud’s model), that characteristic of electric impedance gets maximum 
first, and then minimum (region marked with arrow), which is not feasible and real. Beside the 
quoted faults of Brissaud’s 3D model, one more is noticed, that it cannot encompass effect of 
external mechanical loads on boundary contour surfaces of circular-ring piezoceramic plate. 
Cited facts confirm great advantage of the proposed 3D model,♣ which is detailedly analyzed and 
derived in previous item (8.5.4). 
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♣ 8.5.4. Second approach to the problem of  3D oscillations of circularring  plate.  
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On Figure 8.280. is presented characteristic of electric impedance dependence of 

frequency for the same PZT8 piezoceramic specimen, thereat now are contour surfaces of the 
circular-ring plate loaded with different external loads (different acoustic impedances). Solid 
line represents case of piezoceramic circular-ring plate that oscillates freely in air without 
additional external load. Dashed line represents case when top metalized surface of the 
circular-ring plate )( hz =  is loaded, while other surfaces are free. Dotted line is case of 
simultaneous loading of both top and bottom metalized surface .hz ±=  From Figure 8.280 one 
may see that acoustic load of the circular-ring plate in transversal direction affects mostly the 
transversal (crossing) mode of oscillation, while its influence on radial modes may be 
neglected.  

On Figure 8.281. is presented case of loading of cylindric contour surfaces of circular-ring 
plate in radial direction. One may notice that increase of acoustic load in radial direction 
considerably affects radial resonant modes of oscillation of circular-ring plate, while influence on 
transversal modes may be neglected. Solid line represents circular-ring plate that oscillates 
freely in air without additional external load. Dashed line represents action of acoustic load on 
internal cylindric surface ,1ar =  and dotted line simultaneous action of acoustic load on internal 
and external cylindric surface 1( ar =  and ).2ar =  
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In order to further represent capabilities of proposed 3D model on Figure 8.282. and 8.283., 

dependence of electric impedance in function of frequency f and thickness of the ring 2h is presented. 
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Figure 8.282. - Electric impedance )2,( hfZZ ulul =  Figure 8.283. - Electric impedance )2,( hfZZ ulul =  
  

It is adopted that thickness of the circular-ring plate is in range mmh 1202 ÷= . From Figure 
8.282. one may notice that increase of the ring thickness affects mostly the transversal (crossing) 
resonant mode of oscillation, which shifts to the region of lower frequencies, and less the radial 
resonant normal modes of oscillation. Radial resonant modes shift too, but it is a result of mutual 
coupling with transversal resonant mode of oscillation. Also, change of thickness of circular-ring plate 
affects value of capacitance of piezoceramic ring, which reflects on the change of level height of 
electric impedance (Figure 8.282 and Figure 8.283). 
On Figure 8.284. and 8.285. is presented input electric impedance ulZ  in function of frequency f and 
ratio of internal and external radius 21 / aa  (range is 10/ 21 ÷=aa ). 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8.284. - Electric impedance )/,( 21 aafZZ ulul =  Figure 8.285. - Electric impedance )/,( 21 aafZZ ulul =  
 

Zul

prog201

2h

fview(-20,60)

Z

view(-160,60)

ul

prog201

f

2h

Z

view(-80,60)

ul

prog202

a

f

1 a2/

prog202

Zul

view(110,60) f

a1 a2/

2

1

a
a

 

f view(-80,60) view(110,60) f 

2

1

a
a

 



 17

 As expected, one may see (Figure 8.284. and Figure 8.285) that change of radius ratio has 
the greatest influence on state of radial resonant modes, thereat one may notice an interesting 
phenomenon that first radial resonant mode moves to lower frequencies, while other radial 
resonant modes tend to higher frequencies, and thereat considerably affect the transversal resonant 
mode. This influence of internal radius on resonant frequency of transversal oscillations was not 
analyzed till now in the field of modelling of piezoceramic circular-ring plates and ultrasonic 
sandwich transducers. Similarly to the previous case, alteration of area size of metalized surface 
due to the alteration of internal radius generates alteration of its capacitance, and by itself also 
change of level value of input electric impedance. 
  
 Results from previous analysis can be presented more clearly through diagrams of spatial 
states of input electric impedance ulZ  in function of frequency and applied external load (applied 
acoustic impedance) 3Z  and 4Z . Spatial diagrams of input electric impedance presented on Figure 
8.286. and 8.287 conform to the input electric impedance from Figure 8.280., while spatial 
diagrams of input electric impedance presented on Figure 8.288. and 8.289 conform to the input 
electric impedance from Figure 8.281. On these Figures are clearly noticed values of external 
(acoustic) loads at which some resonant modes disappear.  

Transversal (crossing) mode of oscillation disappears with increase of external load in 
direction of polarization axis across thickness of circular-ring plate  (Figure 8.286.  and Figure 
8.287). Radial mode of oscillation disappears with increase of acoustic load 1Z  and 2Z  in radial 
direction on cylindric surfaces of circular-ring plate (Figure 8.288. and Figure 8.289). However, 
since it is about coupled tensors of state, these influences are not isolated (independent), but also 
the resonant modes are coupled. From Figure 8.286. and 8.287. One may see that changes at 
transversal resonant mode also affect changes of the third and fourth radial mode of oscillation, 
which are closest to the transversal mode, and at high external loads they also affect changes of 
distant radial resonant mode of oscillation. 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8.286. - Electric impedance ),( 43 ZZfZZ ulul ==  Fig. 8.287. - Electric impedance ),( 43 ZZfZZ ulul ==  
 
 
 

 

ulZ  
prog203 

43 ZZ =  

f 
view(110,40) 

ulZ  
prog203 

43 ZZ =  

f view(-115,40) 

ulZ  
prog204 



 18 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8.288. - Electric impedance ),( 21 ZZfZZ ulul ==  Fig. 8.289. - Electric impedance ),( 21 ZZfZZ ulul ==  
Mutual arrangement of radial and transversal resonant modes of oscillation depend of 

relation between internal and external radius, as well as of thickness of the piezoceramic circular-
ring plate itself (figures 8.282, 8.283, 8.284, and 8.285). For definite concrete dimensions of 
piezoceramic circular-ring plate resonant modes of oscillation may be very close, and analyzed 
mechanical external load caused by acoustic impedances, can generate, besides intensity decrease 
of resonant modes, also their frequency shift. So, for example, at circular-ring plate with small 
external diameter and greater height, cylindric lateral surfaces become dominant, and lateral 
external radial loads (acoustic impedances) have significant influence on radial resonant modes of 
oscillation. In these cases, disappearing of radial modes with increase of external load can generate 
frequency shift of transversal mode of oscillation because of their very significant mutual coupling 
(coupled tensors of piezoelectric material state). 
 
 
 

8.5.5.2. Analysis of Numerical and Experimental Results  
 
Main task was to obtain experimental verification of adopted and analyzed 3D model♣ for coupled 

tensors of state of piezoelectric materials, what was the ultimate goal of this dissertation. Input electric 
impedance in function of frequency )( fZZ ulul =  is measured for different piezoceramic elements in shape 
of circular-ring plates and circular plates. Obtained experimental results are compared with 
correspondent results for adopted model obtained by using of software package MATLAB (Figure 8.290). 
In experimental and numerical analysis are used two types of piezoceramic materials, PZT4 and PZT8, 
whose tensors of material coefficients are presented in Appendix II. Here are observed cases of oscillation 
of piezoceramic specimens by excitation, i.e., by leading of electric energy from alternate voltage generator 
on electrode coatings that are located on principal mutually parallel plane surfaces, and which are 
perpendicular to the axis of polarization (Figure 8.121). In Appendix III are presented characteristic 
programmes of numerical analysis using software package MATLAB for proposed and analyzed model of 
circular-ring plate from Figure 8.121, and that is an universal 3D model, because it very well numerically 
simulates mutually coupled tensors at piezoceramic circular-ring plates and circular plates, as in plane, 
                                                 
♣ 8.5.4. Second approach to the problem of 3D oscillations of circular-ring plate. 
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so in space. Other programmes used in this dissertation are similar, and they are not presented because of 
volume and complexity of exposed matter. Dependence of electric impedance of frequency, for 
piezoceramic circular-ring plates and circular plates, is experimentally measured by automatic network 
analyzer HP4194A♣, and comparative results are presented on Figures 8.291, 8.293, 8.295, 8.297, 8.299, 
8.301. 

On Figure 8.290. is presented characteristic of modulus of input electric impedance, simulated 
numerically on computer in function of frequency, for PZT8 piezoceramic circular-ring plate with 
dimensions ],[42 1 mma =  ],[102 2 mma =  and ].[22 mmh =  It is assumed that oscillation is 
performed in air without additional external loading.  

On Figure 8.291. is presented comparison of quoted numerically simulated and measured 
experimental dependence of modulus of input electric impedance. 

From Figure 8.290. and 8.291. one may see that forms and calculated values of input electric 
impedances, as well as calculated values of resonant and antiresonant frequency of oscillation for circular-ring 
piezoceramic plate, are very close to the correspondent experimentally obtained results, as for the first radial 
mode of oscillation R1, as well as for the first transversal (crossing) mode of oscillation T1. 
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Figure 8.290. - Electric impedance )( fZZ ulul =  Figure 8.291. - Electric impedance )( fZZ ulul =  

 
 On Figure 8.292. is presented characteristic of modulus of input electric impedance, simulated 
numerically on computer in function of frequency, for PZT4 piezoceramic circular-ring plate with 
dimensions ],[132 1 mma =  ],[382 2 mma =  and ].[42 mmh =  It is assumed that oscillation is 
performed in air without additional external loading. 

On Figure 8.293. is presented comparison of characteristic of modulus of input electric 
impedance numerically simulated on computer, and experimental characteristic measured on automatic 
network analyzer HP4194A. 

                                                 
♣ Network Impedance Analyzer. 
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Figure 8.292. - Electric impedance )( fZZ ulul =  Figure 8.293. - Electric impedance )( fZZ ulul =  

 
On Figure 8.294. is presented characteristic of modulus of input electric impedance, simulated 

numerically on computer in function of frequency, for PZT4 piezoceramic circular-ring plate with 
dimensions ],[132 1 mma =  ],[382 2 mma =  and ].[35,62 mmh =  It is assumed that oscillation is 
performed in air without additional external loading. 

On Figure 8.295 is presented comparison of simulated and experimentally measured 
dependence of modulus of input electric impedance. 
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First radial mode R1 and first transversal mode T1 are the most often-used modes of oscillation at 

piezoelectric transducers in practical application. Adopted and analyzed model, as one may see, predicts 
with very good accuracy these modes of oscillation at different types of piezoceramic circular-ring 
specimens. Transversal mode of oscillation T1 is most frequently used at ultrasonic high frequency 
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transducers. However, there is often need in practice for use of transducers at lower frequencies. 
Obtaining of lower operating resonant frequencies is possible to realize by application of Langevin’s 
sandwich transducer, or simple piezoceramic circular-ring plate (or circular plate), which oscillates in 
its first radial mode R1. At first radial resonant mode R1 a considerable stressing in transversal (crossing) 
direction exists because of the elastic coupling and high interaction between coupled tensors of state of 
piezoelectric materials. Analysis of the cited transversal oscillation of circular-ring piezoceramic plate is 
enabled by proposed 3D model, and it may be broadened on cylindric piezoceramic bodies in shape of 
circular plates. Adopted 3D model considers mutual coupling of transversal and radial oscillations, and 
thereby is possible to determine optimal geometry of circular-ring plate or circular plate, in order to 
obtain increased displacement in transversal direction during oscillation in region of the first radial mode.    
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Figure 8.296. - Electric impedance )( fZZ ulul =  Figure 8.297. - Electric impedance )( fZZ ulul =  

On Figure 8.296. is presented characteristic of modulus of input electric impedance, simulated 
numerically on computer in function of frequency, for PZT8 piezoceramic circular plate with 
dimensions ],[502 2 mma =  and ].[32 mmh =  It is assumed that oscillation is performed in air without 
additional external loading. On Figure 8.297. is presented comparison of numerically simulated and 
experimentally measured dependence of modulus of input electric impedance. 

On Figure 8.298. is presented characteristic of modulus of input electric impedance, simulated 
numerically on computer in function of frequency, for PZT4 piezoceramic circular plate with 
dimensions ],[202 2 mma =  i ].[52 mmh =  It is assumed that oscillation is performed in air without 
additional external loading. On Figure 8.299. is presented comparison of numerically simulated and 
experimentally measured dependence of modulus of input electric impedance. 
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On Figure 8.300. is presented characteristic of modulus of input electric impedance, simulated 

numerically on computer in function of frequency, for PZT4 piezoceramic circular plate with dimensions 
],[382 2 mma =  and ].[35,62 mmh =  It is assumed that oscillation is performed in air without additional 

external loading. On Figure 8.301. is presented comparison of numerically simulated on computer and 
measured experimental dependence of modulus of input electric impedance. 
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 In case of piezoceramic circular plates, experimentally measured and numerically modelled dependences 
of electric impedance of frequency, in range of the first transversal mode T1, even better coincide regarding the 
cases of circular-ring specimens, and satisfying results are also achieved in range of the first radial mode R1. It is 
noticed that, considering higher radial resonant modes of oscillation R2, R3, R4, R5, …, modelled resonant 
frequencies of radial modes are mostly greater than measured ones, and rarely smaller than measured resonant 
frequencies (this conclusion stands for circular-ring plates and circular piezoceramic plates). One of possible causes 
for arising of this phenomenon is real presence of other types of oscillatory resonant modes, which are not 
encompassed by proposed and adopted model (for example: edge mode of oscillation and flexion mode of 
oscillation – thickness-shear), and which occur in region between the first radial R1 and first transversal T1 resonant 
mode of oscillation. Presence of other types of oscillatory modes is especially characteristic at piezoceramic 
specimens in shape of circular plates. This observation is best seen on Figure 8.299, where some resonant modes 
on experimental characteristic, in the vicinity of the modelled radial mode R2, do not represent radial resonant 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

10

20

30

40

50

60

70

80
Z

 
ul

[d
B

]

f [Hz]

R1
R2

T1

model

prog206

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

10

20

30

40

50

60

70

80

Z
 

ul
[d

B
]

f [Hz]

R1

R2

R3

R4

T1

model prog206



 23

modes. Because the adopted model did not encompass these types of oscillation, numerically modelled dependence 
of impedance was mostly above experimentally measured characteristic, and it did not descend even at higher 
frequencies. Exception is the case of piezoceramic circular plate from Figure 8.297., where missing and not 
encompassed by model modes are poorly coupled with oscillatory modes present in model, so they have not great 
influence on electric impedance characteristic. Second possible cause of arising of the mentioned phenomenon is 
that model does not consider local mechanical and dielectric losses, occurrence of heating, and electrostriction of 
the piezoceramic element. Minimum and maximum values of electric impedance at resonant frequencies of radial 
and transversal oscillation are more distinct at calculated numerically modelled characteristic, regarding the 
experimentally obtained characteristic measured on automatic network analyzer HP4194A, at all analyzed cases of 
piezoceramic circular-ring plates and circular plates. Nevertheless all cited in the analysis, one can make a positive 
conclusion that, by proposed and adopted 3D model, generally in advance, even at design stage, one may predict 
the state of electric impedance with precise determination of frequencies of dominant, mutually coupled, resonant 
oscillatory modes. This conclusion is very important, as for theory and theory of experiment, as well as for the 
manufacturing technology, because one may predict behaviour of piezoceramic elements before their immediate 
workmanship, even at stage of calculation and design process. 
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